

Task Force Web
Developer's Guidance

December 20, 2001

NMCI/TFWeb v 1.1

Document Version 3.0

DEV400-U-A57006-APPL-TFWeb devlopersguidance-v1.1

Change History
The following Change History log contains a record of changes made to this document:

	Published / Revised Date
	Version #
	Author
(optional)
	Section /
Nature of Change

	07/03/2001
	0.2
	SPAWAR
	First draft to begin discussion of architecture

	09/21/2001
	0.3
	TFWeb Team
	Second Draft to include architecture to date

	10/05/2001
	1.0
	TFWeb Team
	All sections updated to contain baseline information presented at Integrator’s Conference

	11/02/2001
	2.0
	Portal Team
	3.13.2 Added Service Guidelines for development of Templates

6.1.2 Added Portal Connector Stub Service Reverse Proxy Guidelines

	11/2/2001
	2.0
	AMCS (John Stafford)
	Complete revision of Application Owner guidance

	11/23/01
	3.0
	R. Smith, M. Zabriski
	Section 4:

Replaced Repository with Module Server

Updated diagrams

Updated PRI Interface information

Moved PRI interface information to section 7

Added Figures 4-4 and 4-5, Registry Browse Tool

	12/7/01
	3.0
	Zabriskie
	Updated Table 2-2

Added Figures 2-1, 2-2

	12/12/01
	3.0
	AMCS (John Stafford)
	Minor revisions to Chapter 11 for consistency

	12/13/01
	3.0
	Tina Carr
	Changed all “Service Repository” to “Module Server”

	12/14/01
	3.0
	Scott Maxwell
	Added mobile code policy and updated figure 6-1

	12/14/2001
	3.0
	Zabriskie
	Sort Appendix A references alphabetically

	12/20/2001
	3.0
	Team Leads
	Added modifications recommended at red team review.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Revision Process

The contents of this document are of special interest to the TFWeb Integrators and those team members should be notified when any updates are made or related documents are created.

Document Properties

Author(s): TFWeb – ISF Team
Publication Date: 12/20/2001

File Name: TFW_Developer_Guide_v1.1.doc

This document was created using: MS Word 2000

Table of Contents
1-11
Introduction

1-21.1
Intended Audience

1-21.1.1
Open Source Site

1-21.2
Purpose

1-31.3
Assumptions

1-41.4
Scope

1-51.5
Document Structure

1-61.6
Supporting Documentation

2-12
Levels of Integration

2-22.1
Level 1 - Hyperlink Integration

2-32.2
Level 2 - Presentation Integration

2-42.3
Level 3 - Application/Data Integration

2-52.4
Capability Comparison Across Integration Levels

2-62.5
Integration Level Requirements Summary

3-13
Enterprise Portal

3-13.1
Accessing the Portal

3-13.1.1
Presentation and Rendering

3-13.1.2
Web Browsers

3-13.1.3
Accessing the Portal with other devices

3-23.1.3.1
Personal Digital Assistants (PDAs)

3-23.1.3.2
Cell Phones/Pagers

3-23.1.4
Presentation Standards

3-33.2
How does Portal connect to the Application/Data

3-33.2.1
Portal Connectors

3-33.2.2
Portal Connectors vs. Service Modules

3-33.2.2.1
Access Control

3-43.3
Portal Operational Flow

3-43.4
Portal Look and Feel

3-53.4.1
Description

3-53.4.2
Portal Example

3-63.5
Standards

3-63.5.1
Incorporate Portal Templates with Module Server

3-73.5.1.1
Include the URL path used to reference the Cascading Style Sheets

3-73.5.1.2
Include tags (selectors/elements) in applications to define the attributes to be implemented

3-123.5.2
Portal Friendly Service Development

3-123.5.2.1
Reverse Proxy

3-143.5.2.2
Impact of Reverse Proxy by Integration Level

3-143.6
How will User Browse / Access the Portal Connector

3-153.7
Aids for Application/Service Developers

3-153.7.1
Portal Connector Stub (PCS)

4-14
Web Services-Based Architecture

4-14.1
Key Concepts

4-14.2
Service Module Definition

4-14.3
Module Server

4-24.3.1
Enterprise Module Server

4-24.3.2
Local Module Servers

4-24.4
Enterprise Service Registry

5-15
Enterprise Portal Taxonomy

6-16
Security

6-16.1
Security Definitions

6-16.2
TFWeb Single Sign-On Security Architecture

6-26.2.1
Role of the Directory in SSO

6-36.3
TFWeb Security Model

6-36.4
TFWeb System Security Policies

6-36.4.1
HTTPS Secure Sockets Layer (SSL) Communications

6-46.4.2
Mobile Code Use Policies

6-46.5
Limitations of TFWeb Single Sign-On

6-46.6
Application Access Control Mechanisms

6-46.6.1
SSO Application Access Control Mechanisms

6-46.6.1.1
User Passwords

6-56.6.2
Legacy Application Access Control Mechanisms

6-66.6.3
Legacy Application Authentication Options

6-66.7
Application Interactions with SSO/AD

6-66.7.1
Authorizing User’s Access to the Application

6-76.7.2
HTTP Headers

6-76.7.3
SSO Web Server Agents

7-17
Application/Service Integration

7-17.1
Integration Examples

7-17.1.1
Level 1 - Hyperlink Integration

7-17.1.2
Level 2 - Presentation Integration

7-27.1.3
Level 3 - Application/Data Integration

7-47.1.3.1
HTTPS GET or POST

7-47.1.3.1.1
Support for Standard HTTP headers

7-47.1.3.2
Process PRI Request

7-67.1.3.3
Build Application SOAP Request

7-67.1.3.4
Prompt for application username and password

7-77.1.3.5
Send SOAP Request to Application

7-77.1.3.5.1
Enterprise Module Server Request

7-77.1.3.5.2
Local Module Server Request

7-77.1.3.6
Application Processes Request

7-77.1.3.7
Receive SOAP Response

7-77.1.3.8
Process Application result data

7-77.1.3.9
Build PRI Response

7-87.1.3.10
Application Results Return and Error Handling

7-97.2
Error Handling

7-107.2.1
Application

7-107.2.2
Service Module

7-117.2.3
SSO

7-117.2.4
Module Server

7-117.2.5
Service Registry

7-117.2.6
Portal Connector

7-117.2.7
Application Event Log

7-117.2.8
Portal

7-127.2.9
Browser

7-127.3
Messaging Protocols

7-127.3.1
SOAP

7-127.3.2
The SOAP Client

7-137.3.3
The SOAP Server

7-137.3.4
SOAP Programming Interfaces

7-137.3.5
Service Registry

7-137.4
Session Management

8-18
Service Certification Process

8-18.1
Process Overview

8-28.2
Information Assurance Certification and Accreditation

8-28.3
Service Intent to Migrate, Rationalization, and Registration

8-38.3.1
Registry Metadata

8-38.3.2
Module Server Package

8-38.4
TFWeb Beta Test Processes

8-48.4.1
IT-21 NIPRNET Beta Lab Process

8-58.4.2
IT-21 NIPRNET Beta Lab Process

8-88.4.3
NMCI Beta Test Process

8-108.4.3.1
NMCI Application (Mobile Code) Certification Process

8-118.5
WEN IT Governance

9-19
Coding Standards, Policies and Guidelines

9-19.1
Directory Structure and Variable Naming Conventions

9-19.1.1
Assumptions

9-19.1.2
Directory Structure for Storing Services in the Enterprise Module Server

9-19.1.2.1
J2EE Service Modules

9-19.1.2.1.1
J2EE Web Applications

9-29.1.2.1.2
J2EE Enterprise Applications

9-29.1.2.1.3
J2EE Addressing Standards

9-39.1.2.1.4
J2EE Directory Standards

9-49.1.2.1.5
J2EE Naming Standards

9-49.1.2.2
ASP Service Modules

9-49.1.2.2.1
ASP Addressing Standards

9-49.1.2.2.2
ASP Directory Standards

9-59.1.2.2.3
ASP Naming Standards

9-69.1.2.3
Static HTML Service Modules

9-69.1.2.4
CGI Service Modules

9-69.1.2.4.1
CGI Addressing Standards

9-69.1.2.4.2
CGI Directory Standards

9-79.1.2.4.3
CGI Naming Standards

9-79.1.3
Filename Standards

9-79.2
Variable Management

9-79.2.1
General Naming Conventions for Variables

9-89.2.2
Local Variables

9-89.2.3
Global Variables

9-89.2.4
Cookies

9-89.2.4.1
Temporary Client Side Cookies

9-99.2.4.2
Permanent Client Side Cookies

9-99.2.5
Server Side Session Variables

9-99.3
Standard Error Handling

9-99.4
JSP, CGI and ASP Standards

9-109.5
Environment Cleanup

10-110
Development Tools and Resources

10-110.1
Development Tools

10-110.2
Testing Tools

10-110.2.1
Portal Connector Stub (PCS)

11-111
Application Owner/Analyst Guidance

11-111.1
Pre-Service Registration Phase

11-111.1.1
Determining TFWeb Integration Goals

11-211.1.1.1
Determining Communities of Interest

11-211.1.2
Reviewing Existing Services

11-211.1.2.1
Market Review of Existing Services and Content

11-211.1.2.2
Registered Services and “Best of Breed” Determination

11-311.1.3
Supportability and Maintainability

11-311.1.4
Web Enablement Determination

11-311.1.4.1
Existing Web-Enabled Applications

11-311.1.4.2
Non-Web-Enabled Applications

11-411.1.4.2.1
Information Services

11-411.1.4.2.2
Real-Time Versus Non-Real-Time

11-411.1.4.2.3
Service/Application User Environment

11-411.1.4.2.4
User/Administrator

11-411.2
Intent to Migrate

11-511.2.1
Submission to the application information database.

11-511.2.2
Integration Level Appropriateness

11-511.2.3
Identify if the program uses Java, JavaScript, ActiveX, or plugins

11-511.2.4
Examine the application database for similar programs that are currently under development

11-511.2.5
Determine current security model and whether IATO/ATO exists, or is required

11-511.2.6
Determine XML integration requirements

11-511.3
Service Registration

11-611.3.1
Verify completeness and accuracy of portal metadata

11-611.3.2
Verify migration plan for level of integration is submitted

11-611.3.3
Ensure IATO/ATO has been updated if security model changed for TFWeb migration

11-611.3.4
Verify initial access control list submitted along with information describing method of updating ACL

11-611.3.5
Portal Compliance Testing

11-611.3.6
Review summary of testing accomplished

11-611.3.7
Review portal integration information submitted

11-711.3.8
DoN XML guideline compliance

11-711.3.9
Set next review date

11-711.3.10
Verify database entry is complete and accurate in AMCS application database

11-711.3.11
Technical Review

11-711.3.12
Configuration Verification

11-711.3.13
Ensure application is logged in the DON CIO Data Management and Interoperability Repository.

11-711.3.14
Verify all application data structures and data interfaces are documented.

11-711.3.15
Verify AMCS OIC has approved migration plan for application/data overlap.

11-811.3.16
Documentation of Developer Requirements.

11-811.4
Application/Service Delivery Phase

11-811.4.1
Application Acceptance

11-811.4.2
Application Delivery

11-811.4.3
Application Integration

1Appendix A: Department of Defense and Department of the Navy Authority References

1Appendix B: Service Code Samples/Templates

1Appendix C: Standards

1Appendix D: Terminology Glossary

Table of Figures and Tables

1-2Figure 1-1: Three Tiers of the TFWeb Portal

2-1Figure 2-1: Application Integration into the Enterprise Portal

2-2Figure 2-2 Hyperlink Integration Examples

2-4Figure 2-3 Presentation Integration Example

2-5Table 2-4. Capabilities By Levels of Integration

2-6Table 2-5. Integration Level Requirements

3-2Figure 3-1: Presentation and Rendering

3-4Figure 3-2: Portal Operational Flow

3-5Figure 3-3: Portal Example

3-6Figure 3-4: Example Portal Screen Shot

3-8Table 3-5: Style Tag Descriptions for Style Sheets

3-11Figure 3-6: Style Sheet diagram for Infostore

3-12Figure 3-7: Style Sheet diagram for Workplaces

3-14Figure 3-8: Portal Connector Library Screen Shot

3-15Figure 3-9 Portal Connector Request for Access Form

4-2Figure 4-1: Enterprise Module Server

4-3Figure 4-2: Enterprise Service Registry

4-4Figure 4-3: Relationship between Registry Metadata and Service Modules

4-5Figure 4-4: Registry Browse Tool – Application Owner Metadata

4-6Figure 4-5: Registry Browse Tool – Application and Service Metadata

5-1Figure 5-1: Service-Centric Access

5-1Table 5-2: Initial TFWeb Portal Taxonomy

6-2Figure 6-1: TFWeb Security Architecture

7-1Table 7-1: Basic Flow for Level 1 Integration

7-2Figure 7‑2 Presentation (Level 2) Process Flow

7-2Table 7-3: Basic Flow for Level 2 Integration

7-3Figure 7‑4: Application/Data Integration (Level 3) Process Flow

7-3Table 7-5: Basic Flow for Level 3 Integration

7-5Figure 7‑6: Portal Request Interface

7-5Table 7‑7: PRI Request Data Definition

7-7Table 7‑8: PRI Response Data Definition

7-9Figure 7‑9: Application Return Response and Error Handling

7-10Table 7-10: Service Module Response

7-12Table 7-11: Module Server protocols

8-1Figure 8‑1 Service Certification Process.

8-5Figure 8‑2 TFWeb IT-21 SIPRNET Beta Test Process

8-7Figure 8‑3 IT-21 NIPRNET Beta Test Process

8-9Figure 8‑4 NMCI Beta Test Process

8-10Figure 8‑5 NMCI Application Certification (Mobile Code) Process

9-3Figure 9‑1J2EE Directory Structure

9-5Figure 9‑2ASP Directory Standards

Executive Summary
TFWeb Mission

“To provide integrated and transformational information exchange for both the ashore and afloat navy to take full advantage of Navy's IT21 and NMCI infrastructure investments.”

Task Force Web (TFWeb) was stood up to implement the vision of a Web Enabled Navy. This vision is being realized using an enterprise three-tiered architecture: presentation, application, and data. This developer’s guide focuses specifically on the data tier and its integration into the application tier. It is assumed that all analysis and requirements gathering were completed prior to initiating this development effort.

The purpose of this document is to provide Navy service owners (i.e., developers, integrators, and implementers) of operational and business processes with detailed guidance while ensuring the seamless integration of existing service applications into the Enterprise Portal infrastructure. Wherever this document does not provide specific direction, supplementary references are provided.

This guide documents a rapidly evolving environment. As such, it is a work in progress and will change over time as the technology is enhanced and as additional integration issues are identified. Each section will be expanded as more information becomes available and guidance to developers/implementers is generated.

1 Introduction

On 28 August 2000, Vice Chief of Naval Operation (VCNO), issued a memorandum subject: Software/Applications for [Navy Marine Corps Intranet] NMCI. A key requirement identified in this memo was the need for “a simple but clear definition of what a web enabled Navy would be.” As a result, numerous organizations came together to determine the high-level technical issues associated with web enabling the Navy. Soon after, between October and November 2000, key requirements and broad timelines were finalized. In December 2000, the VCNO chartered Task Force Whiskey (TFW) to perform a detailed analysis, and provide, within 60 days, a workable execution strategy for web enabling the Navy. On 31 January 2001, the final report was delivered providing a vision for operational, technical, and system architectures as well as a proposed implementation timeline.

Task Force Web (TFWeb) was established to implement a web-enabled Navy. This vision is being enabled by an enterprise three-tiered architecture describing where the different web technologies reside. The three tiers include presentation, application, and data (see Figure 1-1). The communication between the layers is based on standard Application Programmer Interfaces (API) and open-industry standards, such as XML. It also leverages various standard NMCI and TFWeb Afloat horizontal services. The proposed architecture is a comprehensive solution that provides a number of benefits, including:

· Multiple physically distributed portals with only one logical portal
· Load balancing and clustering, providing scalability and high availability

· Open, flexible, distributed, and extensible architecture

· Minimizes risk against the use of new technologies

· Strategic foundation for business and process integration, providing a consolidated view of the enterprise

[image: image1.wmf]Information Assurance

(SSL, PKI, CAC)

Application

Presentation

Navy Portal

Data/Content

Navy XML Infrastructure

Enterprise

(E

-

1)

Enterprise

(E

-

1)

Enterprise

(E

-

1)

Web

Clients

Interoperability

Figure 1-1: Three Tiers of the TFWeb Portal

1 Intended Audience
This guide is focused on the Presentation tier and its integration to the application/business logic tier. Other documents will address other aspects of web enablement. Thus, this guide is intended for the following audience:

· WEN Integration Architects/Engineers

· WEN Application Developers

· TFWeb Integration Architects/Engineers

1 Open Source Site

The TFWeb Open Source Site (OpSS) can be used as a secondary source of valuable information. This website, itself a portal, is a tool for finding additional information, asking questions, and for reviewing developers contributions and comments. The URL below provides minimal access as a guest, but full access can be obtained by completing the registration process.

https://tfw-opensource.spawar.navy.mil
1 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Purpose

The purpose of this document is to provide Navy service owners (i.e., developers, integrators, and implementers) of operational and business processes with detailed guidance while ensuring the seamless integration of existing service applications into the Enterprise Portal infrastructure. Wherever this document does not provide specific direction, supplementary references are provided.

It is assumed that all analysis and requirements gathering were complete prior to initiating this development effort, therefore this guide will only focus on those technical elements required for integration of services into the portal. This document does not address the decision of when to create a service, or which service modules should be created to access specific application functionality

It is assumed that the applications being considered for integration into the Enterprise Portal have been web enabled. This document focuses on the integration into the Enterprise Portal and does not describe how to web enable the application itself; however, it does provide developers with high-level items to consider prior to migrating their applications. As described in Section 2, there are increasing levels of integration, and simple web enabling of an application (i.e., access to an application through a web-browser client) only achieves hotlink integration with the Enterprise Portal, which is the least desirable level of integration.

1 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Assumptions

The following assumptions were made regarding the environment in which this Enterprise Portal will be implemented.

· Scope – The capabilities of the Enterprise Portal will be deployed to ashore and afloat organizations and facilities. The Enterprise Portal will leverage NMCI and TFWeb Afloat infrastructures. The Enterprise Portal provides access to the content and data, which are accessible through web-enabled applications.

· Focus – The focus of the Enterprise Portal is initially internal. That is, initial functionality will be developed and deployed to support NMCI business and warfare operations processes. The middle and long-term possibilities include using the portal system to inter-operate with Allies, coalition forces, commercial suppliers, retirees, and dependents. The Enterprise Portal will be structured to host or link to other service (Joint/non-DoD) applications whenever possible.

· Implementation – Implementation and deployment of web-service capabilities will be incremental; that is, delivery of functionality and content to the users will be evolutionary. This concept of operations (CONOPS) is expressed from the viewpoint of a steady state, fully functional Enterprise Portal system, where the information content of the system is ever changing.

· Examples – where possible, realistic examples are provided of source code. However, URLs used in these examples are not literal and should be replaced with correct references.

· Commercial Standards-Centric – Where possible, the Enterprise Portal will use commercial standards for its interfaces, underlying technologies, and applications. Some of the technologies and/or interfaces being considered for use include, but are not limited to, the following:

· Java/Java 2 Enterprise Edition (J2EE): Java was introduced in 1995 by Sun Microsystems. It is an object-oriented language designed for the World Wide Web (WWW), similar to C/C++, in which the source is compiled into ‘bytecode’, which is then interpreted by run-time environment (known as a Java Virtual Machine) on the host machine. J2EE is a java-centric environment for developing and deploying mult-tiered web-based applications. Some key features of J2EE include:

· Enterprise JavaBeans (EJB). EJB is a Java API developed by Sun that defines the component architecture for multi-tiered systems. EJBs are the objects in a multi-tiered object-oriented J2EE environment that enable the developers to focus on actual business architecture as opposed to developing the interfaces between the different components themselves.

· Servlets and Java Servlet Pages (JSPs). Servlets are java applets that run on the server side as an alternative to Common Gateway Interface (CGI) applications. JSPs are an extension of servlets that allow web developers to dynamically build web pages.

· eXtensible Markup Language (XML): XML is an extension/subset of Standard Graphical Markup Language (SGML) specifically designed for WWW dissemination and display of data. It is an open framework in which developers can develop (and, more importantly, standardize and validate against) a tagged data format. When done properly, the tagging becomes a form of metadata that can be used to more easily transition/translate the data inter/intra system or application. Furthermore, the rendering of XML is detached from the data itself. Therefore, the data in an XML document/file can be reformatted for display or processing any number of ways without ever having to modify the tags they contain.

· XML Schema: While XML 1.0 supplies a mechanism, the “Document Type Definition” (DTD) for declaring constraints on the use of markup, automated processing of XML documents requires more rigorous and comprehensive facilities in this area. The requirements are for constraints on how the component parts of an application fit together, the document structure, attributes, data-typing, and so on. XML Schema addresses the means for defining the structure, content and semantics of XML documents

· SOAP: SOAP is a lightweight protocol for exchange of information in a decentralized, distributed environment. It is an XML based protocol that consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined datatypes, and a convention for representing remote procedure calls and responses. SOAP can potentially be used in combination with a variety of other protocols; however, the only binding defined in this document is SOAP in combination with HTTP.

· UDDI: The Universal Description, Discovery and Integration (UDDI) specifications define a way to publish and discover information about Web services. The term “Web service” describes specific business functionality exposed by a company, usually through an Internet connection, for the purpose of providing a way for another company or software program to use the service. Even when one considers XML and SOAP, though, there are still vast gaps in implementing a communications infrastructure. The UDDI specifications borrow the lesson learned from XML and SOAP to define a next-layer-up that lets organizations share a way to query each other’s capabilities and to describe their own capabilities.

· NMCI - The Navy Marine Corps Intranet (NMCI) will supply the shore-based and embarkable infrastructure.

· TFWeb Afloat – TFWeb Afloat and related shipboard standards and delivery mechanisms will provide an afloat infrastructure.

1 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Scope

This guide documents a rapidly evolving environment. As such, it is a work in progress and will change over time as the technology is enhanced and as additional integration issues are identified. Each section will be expanded as more information becomes available and guidance to developers/implementers is generated. The latest copy of this guide, tools referenced within it and other pertinent documentation may be found on the TFWeb OpSS.

This document will answer the question, “How do I get my application into the operational Enterprise Portal environment?” by providing detailed guidance on performing the following activities:

· Registering a developer for access to the TFWeb environment.

· Registering and querying applications, data structures/fill, Object Interfaces/Application Programming Interfaces (APIs).

· Scheduling integration and operational testing.

The role of the TFWeb team with regards to the portal integration development process will be to:

a) Establish registry requirements for applications served by the Enterprise Portal (e.g., applications, content).

b) Establish and track metrics to ensure:

· Timeliness and availability of updates for specific applications

· Consolidation of applications

· Bandwidth and storage projection

c) Generate and maintain the technology implementation/migration plan.

d) Establish security policy.

e) Act as Designated Approval Authority (DAA) for the Enterprise Portal testing, beta and pilot environments, as necessary.

1 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Document Structure

This document is structured in a logical manner to best address developers questions. The sections of the document are as follows

· Section 2 defines the three levels of integration into the Enterprise Portal and contrasts the capabilities and requirements of each.

· Section 3 provides in-depth details about each element of the Enterprise Portal and guidance on how to connect to the portal using specific tools and standards.

· Section 4 describes the registry and module server and how they fit into enterprise portal architecture

· Section 5 describes the taxonomy for the Enterprise Portal.

· Section 6 provides information on the portal security architecture including Single Sign On (SSO), password strategy, and access control mechanisms.

· Section 7 provides examples and basic flows for the levels of integration mentioned in Section 2. It also describes the error handling strategy and messaging protocols.

· Section 8 provides the process for migrating an existing application into the portal, ensuring that it meets all standards and does not duplicate existing services. This section also covers how to obtain a waiver for level 1 integration

· Section 9 introduces industry standard policies and guidelines for code to assist developers in choosing best of breed solutions.

· Section 10 identifies development tools of interest to service providers in web enabling and integrating with the Enterprise Portal.

· Section 11 provides process to follow for analyzing an application and granting waivers.

· Appendix A identifies all the related Department of Defense (DoD) and Department of the Navy (DON) Authority References and other TFWeb-related documents.

· Appendix B provides templates and sample code for JSP, ASP, XML, XSL and CGI.

· Appendix C addresses standards enforced by the TFWeb Enterprise Portal solution and the DoN.

· Appendix E provides a list of terms and acronyms used in this document or other documents referenced within it.

1 Supporting Documentation

Under CM control within NMCI are the following Documents that provide additional detail on all components that compose TFWeb. All maintenance changes must be reflected in these documents. (Note, NMCI reference numbers are provided when available; several are outstanding.). These documents may be found in the NMCI eRoom at https://nmci.eroom.com/eRoom/nmcipmo/TFW/0_bf8d.

DEV 401 Engineering Design Documents:

· DEV 401 TFW Directory Services (TFW-AD-CT-401 v1.1)

· DEV 401 TFW Portal Server (TFW-TDD-Dev401-Portal Tech Design-v1.1, E09-03-0001)

· DEV 401 Registry (SR-TDD-DEV401 v1.1)

· DEV 401 Enterprise Module Server (TFW-TDD-Dev401-Module Server Infrastructure-v1.1, E09-03-0003)

DEV 402 Engineering Assumptions Documents:

· DEV 402 TFW Directory Services (TFW -TSD- Dev402-Active Directory- v 1.1, E09-03- 00 04)

· DEV 402 TFW Portal Server (TFW -TSD- Dev402-Portal Server- v 1.1, E09-03- 00 05)

· DEV 402 TFW Registry (TFW -TSD- Dev 402-Registry- v1.1, E09-03- 00 06)

· DEV 402 TFW Enterprise Module Server (TFW -TSD- Dev402- Repository- v 1.1, E09-03- 00 07)

DEV 403 Installation and Configuration Documents:

· DEV 403 TFW Enterprise Module Server BEA v1.1.doc (TFW-SID-DEV403-xxx-v1.1)

· DEV 403 TFW Directory Services v1.1.doc (TFW-SID-DEV403-Active Dir-v1.1, E09-03-0008)

· DEV 403 TFW Enterprise Module Server IIS v1.1.doc (TFW-SID-DEV403-IIS Adv.Config, v1.1, E09-03-0010)

· DEV 403 TFW Portal Server v1.1.doc (TFW-SID-DEV403 Portal Server, v1.1, E09-03-0002)

· DEV 403 TFW Registry v1.1.doc (SR-SID-DEV403-v1.1)

DEV 406 Engineering Operating Guidelines

· DEV 406 TFW Service Registry (TFW-xxx-Dev406-xxxx-v1.1)

· DEV406 TFW Enterprise Module Server 1.1.doc (TFW-xxx-Dev406-xxxx-v1.1)
· DEV 406 TFW Portal Server (TFW-xxx-Dev406-xxxx-v1.1)

2 Levels of Integration

A web-enabled application allows users to access the application information and functionality through a web browser, but the levels of integration defined here describe the degree to which the web-enabled application or service has been integrated into the Enterprise Portal. Task Force Web has defined three levels of integration: Hyperlink Integration, Presentation Integration and Application/Data Integration (also referred to as Level 1, Level 2 and Level 3 Integration respectively). Figure 2-1 illustrates each of these three levels of integration in relation to their interaction with the Enterprise Portal.

[image: image2.emf]Browser

Portal

Service

Registry

SSO

Local

Module Server

App2 App3 App4

Web

Server

3. Application/Data

Integration

PRI Interface

HTTPS -

SOAP 1.1

(XML)

1. Hyperlink

Integration

HTTPS (HTML or XML/XSL),

HTTPS –SOAP 1.1, JDBC/ODBC,

J2EE, Other native protocol

HTTPS -

SOAP 1.1

(XML)

2. Presentation

Integration

Enterprise

Module Server

Not Recommended/Migration

Plan Required

HTTPS

(HTML/XML)

HTTPS

App1

Enterprise Portal

HTTPS

(HTML/XML)

HTTPS

(HTML)

Figure 2-1: Application Integration into the Enterprise Portal

Application/Data Integration is the desired level of integration; however, there may be justifiable reasons why that level of integration cannot be achieved or does not make sense for a particular application. A waiver and/or a Level 3 migration plan must be provided for applications that will only achieve Hyperlink or Presentation levels of integration.

All applications are integrated into the Enterprise Portal as a Service. For each integration level, the application developer must provide at least one “Service Module” developed in accordance with TFWeb requirements. The Service Modules provide the functionality for integrating the applications into the Enterprise Portal, and will vary in complexity and functionality depending on the integration level. Each Service Module is hosted in the Enterprise Module Server (EMS) or a Local Module Server (LMS). These Service Modules must also be registered in the Enterprise Service Registry, in order to complete the integration of the application as a Service.

Regardless of integration level, all application communications with the Enterprise Portal must use HTTPS (128 bit SSL).

Each level of integration, defined in the following sections, has specific requirements for integrating with the Enterprise Portal. Please note that this discussion refers to the integration of services/applications with the Enterprise Portal. (See Section 7)

2 Level 1 - seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Hyperlink Integration

Hyperlink Integration provides “as is” access to an existing web-based application through one or more hyperlinks displayed within a pane of the portal. The hyperlink is generated by a Service Module, hosted within the Enterprise Module Server, with access to this Service Module controlled through the permissions management application (Single Sign On, SSO). Alternatively, this Service Module may be hosted in a Local Module Server. Local Module Servers are required to control user access to local Service Modules.

When a user selects the Service Module, the hyperlink is displayed within a pane of the portal on the user’s desktop, and generally includes a brief description of the application being accessed, and possibly an associated lightweight graphic. When the user selects the hyperlink, a new browser window is opened on the user’s desktop, through which the application will execute. At this point, communication occurs directly between the new browser window and the application.

App1 in Figure 2-1 employs Hyperlink Integration. It does not implement the PRI interface or a SOAP interface. See Figure 2-2 for an example of Hyperlink Integration.

[image: image3.jpg]Application Opens in New Browser Window

it 61 it sora

DoN Enterprise Portl

Tt gt Exchange 7

Site Map_ Whar's

2 Service Module in Portal Pane %}}%’E:%:;{;E}?

formation for

e o s el

[@ Tsedaes

Figure 2-2 Hyperlink Integration Examples

This method is usually easiest to implement, though it is the least desirable. Application owners attempting this level of integration must first obtain a waiver from TFWeb, and must also provide a migration plan for achieving Level 3 integration. See Section 11 for more information about waivers and migration plans. Hyperlink Integration requires no true integration with Enterprise Portal services or content, other than the initial authorization that the user has access to the service containing the hyperlink. Therefore, there is minimal benefit gained in its integration into the Enterprise Portal. When working with multiple applications using Hyperlink Integration, multiple browsers will be opened on the user’s desktop causing clutter and inefficiency. Additionally, any application provided XML/XSL content will not be converted to HTML by the portal XML rendering engine.

Hyperlink Integration is commonly referred to as Level 1 integration.

2 Level 2 - seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Presentation Integration

Presentation Integration provides “as is” access to an already web-enabled application. This level of integration requires that all application content be rendered within a pane of the portal (an IFRAME). The initial connection to the application is provided by a Service Module, hosted in the Enterprise Module Server, that generates standard HTTP redirect to the application. Access to the service module is controlled through SSO. Alternatively, this Service Module may be hosted in a Local Module Server. Local Module Servers are required to control user access to local Service Modules.

When accessed by the user, the application is displayed within a pane of the portal on the user’s desktop. The user is able to directly interact with the application appearing in this pane. All communication between the user and the application must flow through the portal. This type of communication is implemented through a reverse HTTP proxy mechanism within the Enterprise Portal, and requires that the application present its content in portal compliant HTML or XML/XSL. Portal-compliant HTML or XML/XSL is defined in a later section of this document.

App2 in Figure 2-1 employs Presentation Integration. It does not need to implement the PRI interface or a SOAP interface. See Figure 2-3 for an example of Presentation Integration.

Application owners attempting this level of integration do not need to obtain a waiver from TFWeb, but they must provide a migration plan for achieving Level 3 integration. See Section 11 for more information about waivers and migration plans.

Presentation Integration allows multiple applications to be visible within multiple panes (e.g., channels, frames) of the same browser window of the Enterprise Portal. Additionally, because all content is passed through the portal, any application providing XML/XSL content will be converted to HTML by the XML rendering engine in the portal. However, the content and data access mechanisms still reside outside of the Enterprise Module Server.

Presentation Integration is commonly referred to as Level 2 integration.

[image: image4.jpg]=10]|
it [E1ecioreston o B

George Washington OVNZ3
Koo Soamin's. s

Service Module and Application

Rendered in Portal Pane (IFRAME)

[Nevs/Marine Corpe | O
@

Figure 2-3 Presentation Integration Example

2 Level 3 - seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Application/Data Integration

Application/Data Integration involves a more closely coupled integration of the application with the Enterprise Portal. This integration level requires that the application move toward supporting what are commonly known as “Web Services”. Application/Data Integration is the TFWeb-preferred level of integration. All application content is provided through Service Modules that reside in a Module Server, either the Enterprise Module Server or a Local Module Server. These types of Service Modules act as lightweight connectors, exposing some fine-grained portion of application functionality in a manner that is compliant with the Enterprise Portal. Application logic and data continue to reside within the existing application and data layers, and not within the Service Module. When accessed by a user, all application content is rendered within a pane of the portal (an IFRAME) on the user’s desktop. Access to all services is controlled by SSO, in the case of Service Modules hosted in the Enterprise Module Server. Local Module Servers are responsible for controlling user access to local Service Modules. The user is able to directly interact with the application appearing in this pane. All communication between the user and the application must flow through both the Enterprise Portal and a Module Server. All communication between the service module and the back-end application must utilize the Simple Object Access Protocol (SOAP) v1.1 XML messaging standard.

When invoked, the Service Module interacts with the backend application or web service (as described in Section 7), and formats the results of the request into the appropriate XML/XSL response. Additionally, because all content is passed through the portal, any service module or application providing XML/XSL content will be converted to HTML by the XML rendering engine that resides in the Enterprise Portal.

App4 in Figure 2-1 employs Application/Data Integration. The application exposes a SOAP interface to the Service Module, and the Service Module implements the PRI interface to the Enterprise Portal. App3 in Figure 2-1 may also be integrated at Level 3 as long as the Local Module Server implements the PRI to the Enterprise Portal, and also exposes a SOAP interface when communicating with other applications or services. In this case, both App3 and App4 would be considered “Web Services”, providing interoperability capabilities fully aligned with the TFWeb vision. Level 3 integration may appear the same to the end-user as a Level 2 integrated application, as shown in Figure 2-3.

A description of the Service Modules will be registered with the global Service Registry to provide the Enterprise Portal with quick access and search capability. Section 7 provides service developers with additional details of how to build Application/Data Integration Service Modules.

Application/Data Integration is commonly referred to as Level 3 integration.

2 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Capability Comparison Across Integration Levels

There are a number of capabilities that are desirable for the Enterprise Portal, and the level of integration achieved for an application or service may impact the degree to which a particular capability can be achieved. A finite set of desirable capabilities are defined as follows:

· Single Sign-on – The ability for users to authenticate once to the portal and be able to access all authorized resources within the enterprise. A single point sign-on accepts the user's name and password and automatically logs on to all appropriate services.

· Access to Service – The ability to obtain access to a service from the portal.

· Service Presented in Portal – The ability to view/manipulate some portion of the service’s information from within the portal’s presentation with the assumption that multiple services can be viewed in the same portal presentation at the same time.

· Policy-enforced Look-and-Feel – The manual enforcement of standards by publishing policies and manually checking for compliance.

· Automatically enforced Look-and-Feel – The enforcement of standards by being the single point of control. In the case of the portal, if the portal is uniquely responsible for all presentation of information, then the look-and-feel can be automatically enforced by ensuring that the portal’s presentation meets the standard.

· Data Sharing (cut-n-paste) – Data or information from one service is simply captured and then pasted into another service with the user taking responsibility for the format and definition of the data (e.g., cutting and pasting a text string). There is no understanding of the data by the portal. The portal processes information presentation (e.g., HTML) without having to understand the underlying data definition.

· Data Sharing (data aggregation) – The portal processes the information and is responsible for formatting the presentation (e.g., XML style sheets) and provides the potential for additional business logic that manipulates data from multiple sources and data aggregation.

· Business Process Integration – The re-engineering of existing business processes through the aggregation of services and data.

Table 2-4 shows the degree to which these capabilities can be achieved across the levels of integration. Clearly, application/data integration is the goal, but significant capability can be achieved with presentation integration. While hyperlink integration is not desirable, it may be an acceptable first step from web enabling to portal integration.

Table 2-4. Capabilities By Levels of Integration

	Capabilities
	Hyperlink
	Presentation
	Application

	Single Point Sign-on
	·
	·
	·

	Access to Service
	·
	·
	·

	Service Presented in Portal
	
	·
	·

	Policy-enforced Look-and-Feel
	·
	·
	·

	Automatically-enforced Look-and-Feel
	
	Limited
	·

	Data Sharing (cut-and-paste)
	Limited
	·
	·

	Data Sharing (data aggregation)
	
	
	·

	Business Process Integration
	
	
	·

2 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Integration Level Requirements Summary

Some of the most significant requirements for each level of integration are summarized in Table 2-2. These requirements will be discussed in further detail throughout this document, see the document sections that are referenced in Table 2-5 for detailed information on each requirement.

Table 2-5. Integration Level Requirements

	Requirement

(Section Reference)
	Integration Level

	
	1. Hyperlink
	2. Presentation
	3. Application/Data Integration

	Service Module Implementation

Section 2 and 7
	Static HTML or XML/XSL file with lightweight images and one or more hyperlinks
	ASP, JSP, or CGI containing HTTP Redirect
	ASP, JSP, or CGI with PRI and SOAP interface handlers

	PRI Interface (HTTP Header Message) Support

Section 7, Appendix B, (Code Samples)
	No
	No
	As required by the application for session management and error reporting

	SOAP Interface Support

Section 7
	No
	No
	Required – SOAP Client in service module, SOAP Server in the application

	Service Module Security

Section 6
	Enterprise SSO Integrated, URI protected by application ACL

	Application Security

Section 6
	Prompt for username and password unless the application is integrated with the Enterprise SSO.

	Preferred Application Security Challenge

Section 6
	None
	Username and Password in HTML Form in the application
	Username and Password in HTML Form in service module. HTTP BASIC authentication over SSL, or better, is required in the application

	EMS to Application Communications

Section 6
	HTTPS (128 bit SSL, DoD PKI Server Cert.)

	Support for 1 way or 2 way SSL in Application Communications

Section 6
	Per Application Requirements

	Portal Connector Reverse Proxy (URL Rewrite)

Section 3
	No
	Required
	Required

	HTML BASE TAG for relative references

Section 3
	No
	No
	Required only for application backend references

	Portal Rendering of XML/XSL to HTML (XSLT)

Section 7
	Supported in Portal Connector for Service Module XML/XSL only (Xalan-Java version 2.2.D11)
	Supported in Portal Connector (Xalan-Java version 2.2.D11)
	Supported in Portal Connector (Xalan-Java version 2.2.D11)

	EMS XML Parsing Support

Section 7
	Not Applicable
	Not Applicable
	Support is provided for:
ASP: MSXML 4.0

BEA: Xerces Java 1.4.4 XML

	EMS SOAP Support

Section 7
	Not Applicable
	Not Applicable
	Support is provided for:
ASP: MS SOAP Toolkit Version 2.0 SP2

BEA: WebLogic Web Services

	Portal IFRAME compatibility

Section 3
	No
	Required
	Required

	EMS Data Storage and Replication or Update

Section 4.2
	Not Available
	Not Available
	Not Available

	EMS Hosted Applications

Section 4.2
	Not Available
	Not Available
	Not Available

	Service Module Output

Section 7
	HTML or XML/XSL
	HTML or XML/XSL
	XML/XSL

	Application Output

Section 7
	HTML or XML/XSL
	HTML or XML/XSL
	One or more SOAP/XML service interfaces

	Mobile Code (Applets, ActiveX, client-side script)

Section 6
	Allowed within TFWeb policies and guidelines

	Client-Side Script

Section 7
	Supported
	Supported with the following restrictions:

· Frame refs can not refer to ‘_top’ frame

· No dynamically generated URL links
	Supported with the following restrictions:

· Frame refs can not refer to ‘_top’ frame

· No dynamically generated URL links

	Application Frames/Iframes

Section 7
	Supported
	Supported with the following restrictions:

· Cannot target ‘_top’ frame. Frame refs should be named
	Supported with the following restrictions:

· Cannot target ‘_top’ frame. Frame refs should be named

	Popup child windows

Section 7
	Supported
	Not recommended, must identify application in title bar
	Not recommended, must identify application in title bar

	Maintain State in EMS module

Section 7
	NA
	Not supported, session ID is provided
	Not supported, session ID is provided

	Cascading Style Sheets

Section 3
	Supported
	See style-sheet reference
	See style-sheet reference

	Waiver Required

Section 11
	Required
	No
	No

	Level 3 Migration Plan Required

Section 11
	Required
	Required
	No

3 Enterprise Portal

In general, an Enterprise Portal is a web-based desktop that provides a single, secure interface into the applications, information and processes of the enterprise not only for its employees but also for its customers, partners and clients for today’s Internet business generation. It truly provides convergence of Web information and desktop applications through application integration.
As per the TFWeb policy there will be only one Enterprise Portal for the Department Of Navy. All applications must interface with the single Enterprise Portal, which is actually implemented as a distributed system of virtually identical portal systems to improve user access and redundancy.

3 Accessing the Portal

3 Presentation and Rendering

The primary mechanism used by the portal to present application information to the users is the “WorkPlace” metaphor. Each workplace directs the user to a page within the portal, which contains one or more logical Portal Connectors that connect the user to the content. Users can create many workplaces, place any number of TFWeb applications or services onto each workplace, and re-size and re-arrange the content on each workplace.

3 Web Browsers

The browser for use with the Enterprise Portal must conform to open standards such as HTML/DHTML and XML. The browser must conform to the TFWeb Security Model (e.g., signed mobile code, 128-bit encryption). TFWeb will leverage off of NMCI and TFWeb Afloat to provide the browser-based technologies.

For the current version of the Enterprise Portal, Microsoft Internet Explorer version 5.5 is the preferred browser, although versions 4.0 and later are also acceptable and are consistent with current Navy-wide browser requirements.

Microsoft Internet Explorer (IE) runs in the Macintosh, all recent MS Windows, Linux (using emulation), Solaris, and HP-UX operating environments. Depending on the operating environment, IE requires 16 to 64 MB of random access memory and 27 to 80 MB of hard disk space to operate properly.

Microsoft IE supports HTML, DHTML, XML, XSL, Java, Cascading Style Sheets (CSS) Level 1 and the Document Object Model (DOM) Level 1 standards.

While Netscape users will be able to access the portal, they will suffer severe performance penalties with any version prior to 6.0, which is the first to support iFrames.

NOTE:
Both IE 6.0 and Netscape 6.0 users will experience some problems using the portal system, thus the recommended version for the TFWeb “Pilot” portal system is IE 5.5x
Any service or application that is integrated into the Enterprise Portal must be tested with and supported by IE 5.5. There may be an issue with configurations that currently support older versions of Microsoft IE or Netscape. The primary functionality of an application must work correctly in the approved browsers; older versions will not be supported.

3 Accessing the Portal with other devices

While the implementation of the Pilot Portal System will render all XML/XSL into HTML for delivery, the future plans are to deliver content according to the type of device used to load the page, the role of the user connecting to that page and the data type being displayed. Dynamic rendering is achieved by applying XSL style sheets relevant to the device used.

[image: image5.wmf]Workstation

Portable Workstation

Mobile Phone

Paging

XML

XSL

XSL

XSL

XSL

(Future)

(Future)

Figure 3-1: Presentation and Rendering

XSL style sheets are used to define the access for each communication channel. Data is formatted in XML by portal compliant applications, or is transformed into XML format by the integration framework prior to portal access. The style sheets allow this common data to be formatted based upon user context.

A variety of physical devices can be used as web clients. The presentation layer of the application should be designed with display and user input device independence in mind, and are required to support the presentation standards supported by the Enterprise Portal (e.g., appropriate D/HTML, XML, WML versions).
3 Personal Digital Assistants (PDAs)

Use of PDAs is increasing as their capabilities mature. TFWeb will publish guidance that will enable application/content developers to simultaneously support users that employ PDAs for the following uses:

· Web Browsers (see above), understanding that the capabilities of PDAs are, by nature, less than that of a fully featured web browser. This will include the synchronization of more static web pages for data content or briefings, as well as certain ‘news’ content.

· Calendaring and Contact Management to synchronize with the approved office automation products.

· Basic E-mail support and file perusal, supporting the approved office automation product formats.

3 Cell Phones/Pagers

Wireless applications on cell phones include WML and Hand-Held Device Markup Language (HDML) browser-based standards, as well as the emerging Java 2 Micro Edition (J2ME) client software.

3 Presentation Standards

Web content is typically derived from either static HyperText Markup Language (HTML) files stored on the web server, or from dynamic data, as in a database. Static HTML is easy to create but is difficult to maintain on large web sites because the look and feel of the web site is stored inseparably from the data. Best commercial software development practices dictate that the look and feel (presentation) should be separated from the data (content) thus allowing them to be managed separately. That is clearly the goal in moving towards application/data integration.

3 How does Portal connect to the Application/Data

The portal will connect to the applications/data using Portal Connectors. Portal connectors connect to the services in the Enterprise Module Server (EMS), which in turn provides the connectivity with the applications/data, or Local Module Servers (LMS).

3 Portal Connectors

The portal will connect to the services in the EMS using Portal Connectors. The services in turn provide the connectivity with the applications/data, or LMS. The Portal Connectors and services will conform to the Portal Request Interface (PRI) specification defined Section 7. The Portal Connectors will provide the initial level of connectivity to the module server to support the required levels of integration (as discussed in section 2).

The Portal Connectors (Components) are the Portal’s presentation building blocks displaying content from a data source. The term “Portal Connector” is synonymous to Component, Gadget, CDA (Content Delivery agent) or Portlet, which are terms, used by other portal technologies..

3 Portal Connectors vs. Service Modules

The Portal Connector and the Service Module are NOT one and the same. The Portal Connector resides in the portal repository (which is specific to the portal product) whereas the Service Modules will reside in the EMS , which is physically different than the portal repository.

The Portal Connectors act as a proxy between the user and the Service Module or application.. The Portal Connector will connect to the Service Module via HTTPS request/reply from the portal server.

A portal administrator using administrative tools will publish Portal Connectors. The Enterprise Service Administrator will make the service available in the EMS.

NOTE: There is a “one-to-one” relationship between services and Portal Connectors in that a Portal Connector can only display a single service. If an “aggregate” service is desired, (i.e., combining Service ‘A’ and Service ‘B’), a developer must create Service ‘C’ (with the logic to combine ‘A’ and ‘B’) which would then be published via a new Portal Connector.

For more information on Services please refer to Section 4.

3 Access Control

A Portal Connector and a service handle access control differently. The TFWeb architecture will follow the “Access then Deny” approach, i.e., all Portal Connectors are visible to all users. Based on Department of Navy (DoN) policy, there may be a few exceptions for high security applications where the corresponding Portal Connectors will only be visible to a few authorized users. The majority of the Portal Connectors will be available to all the workgroups (roles) in the portal and access to the Portal Connectors is not role-based with some exceptions as stated above.

In the case of a service, the authorization is provided through the Universal Resource Identifiers (URI). It is the service owner’s responsibility to provide the necessary authorization information (i.e., authorized user names) to the Directory Services Administrator to set the access control list (ACL).

The users can arrange the Portal Connectors on their workplace of choice by selecting them from the ‘Library’ or ‘Channel’ section in the portal. The Portal Connector will try to connect to the underlying service by sending a HTTPS request to the service repository. The user’s request will be authorized at the service level.

Thus in some cases, even though the Portal Connector is visible to the end user, the actual contents may not be available. The user will need to request access through the service owner.

Please refer to Section 6 for details regarding security and authentication.

3 Portal Operational Flow

[image: image6.wmf]Portal Repository

....

Enterprise Module Server

Service 1

Service 2

Service N

....

Portal Server

Application/Data

or

Local Module

Server (LMS)

User Request

Response

USER

Portal Connector

Portal Connector

Portal Connector

(HTML Only)

Figure 3-2: Portal Operational Flow

The portal operational flow is as follows:

1. A user connects to the portal system through the desktop browser and switches to a workplace.

2. The Portal Connectors on that workplace all perform the following activities for all three types of integrations discussed earlier.

· Get the metadata about the service from the Enterprise Service Registry (not shown above), e.g. integration type, Service Module URI, link reconfigure flag, etc.

· Call the corresponding Service Module in the Enterprise Module Server

· The Service Module interfaces to the application/data depending on the integration level.

· If the content returned to the Portal Connector is XML with XSL style sheet (i.e., level 3 integration), then the Portal Connector will call an XSLT (e.g., Xalan) with the returned XML/XSL to produce HTML on the server side.

· Render the HTML content in the Portal Connector on the workplace

3. All the remaining Portal Connectors on the workplace will be executed as stated above.

4. The portal renders content returned by the Portal Connectors as they are executed and receive data. Even though one or more Portal Connectors fail to execute or do not receive data in the specified time, the portal proceeds further to render any other Portal Connectors on the workplace.

3 Portal Look and Feel

The purpose of this section is to provide an overview of the TFWeb portal presentation layer.

[image: image7.png]ok - = - D [4| Qearch (ravonss Frisoy |y G- 20 & w R

|
[

ik]| adtess | 2 et spwar vy igapiert ot geceresend—satus

SPAWAR scoco oo

Keyword Search:

Advanced C4ISR Search

10/01/2001 - NDIA/AFCEA/SPAWAR Sponsors Quarterly Small Business

SAN DIEGO — The joint National Defense Indusirial Association
(VDLA)Armed Forces Communications and Electronics Association
(AFCEA)/Space and Naval Warfare Systems Command (SPAWAR) Small
Business Committee will sponsor a quarterly forum on Wednesday, October 17 th
from 800 uatil 1130 am.

New Acrobat Resder 5.0

N&Vy/Marine Corps
White-Pages Directory

YOU HAVE ENTERED AN OFFICIAL DEPARTMENT OF THE NAVY WEB INFORMATION SERVICE
ing the DISCLAIMER statement,

After reading and

Figure 3-3: Portal Example

The portal presentation layer will have a consistent look and feel among both ashore and afloat implementations. It will consist of two major sections: the Header section and the Content section. The Header section will occupy approximately 15% of the browser; the Content section will occupy approximately 85% from top to bottom. For the WEN Beta and Pilot implementation, several “TFWeb Standard” templates will be created for participating Commands and User Groups. All the templates will have the same components,, however they will differ in color scheme, areas of Command Branding (images and artwork) and dimensions. In order to preserve a common look and feel across the TFWeb system, new templates shall only be created by copying “TFWeb Standard” templates and modifying the artwork and text in the designated branding areas.

3 Description

The purpose of the portal presentation layer is to provide the user with a common look and feel for all the components, applications and services that are available in the portal, as well as consistent navigational controls. This section will present the granular details of how common components of the presentation layer should look and behave in order to ensure a consistent and positive user experience on both ashore and afloat implementations.

[NOTE: If the target audience of this document is the application/service developer, the following highlighted sections should be deleted. They really only apply to someone who has the ability to modify the portal system and modify existing TFWeb developed templates.]

3 Portal Example

The following figure is an example portal, showing all sections as detailed above:

[image: image8.png]ok - = - D [4| Qearch (ravonss Frisoy |y G- 20 & w R

|
[

ik]| adtess | 2 et spwar vy igapiert ot geceresend—satus

SPAWAR scoco oo

Keyword Search:

Advanced C4ISR Search

10/01/2001 - NDIA/AFCEA/SPAWAR Sponsors Quarterly Small Business

SAN DIEGO — The joint National Defense Indusirial Association
(VDLA)Armed Forces Communications and Electronics Association
(AFCEA)/Space and Naval Warfare Systems Command (SPAWAR) Small
Business Committee will sponsor a quarterly forum on Wednesday, October 17 th
from 800 uatil 1130 am.

New Acrobat Resder 5.0

N&Vy/Marine Corps
White-Pages Directory

YOU HAVE ENTERED AN OFFICIAL DEPARTMENT OF THE NAVY WEB INFORMATION SERVICE
ing the DISCLAIMER statement,

After reading and

Figure 3-4: Example Portal Screen Shot

3 Standards

The following sections describe standards that must be adhered to by the Enterprise Portal and all integrated applications. Most importantly, the response generated by the application/service shall conform to DoD Section 508, “Web page accessibility” detailed in Appendix C.
3 Incorporate Portal Templates with Module Server

This section illustrates issues to be considered by the Service Developers for the incorporation of portal-defined templates and styles. The portal uses different style sheets for each template or theme; however, the name of the style sheets and their elements (referred to as “tags”) remain the same.

It is advisable that the Service Developers incorporate these cascading style sheets (CSS) into their applications to keep the look and feel across all applications consistent with the portal and to create a more seamless, user-friendly experience. In some instances, maintaining a template’s predefined color palette may be critical for a particular working environment, such as a ship’s command center where the implemented template may be designed for a dark room environment and a bright white application would be hard to use. Incorporating the CSS will promote display consistency across multiple pages and once incorporated, will save time in both developing and maintaining existing and new applications.

How to incorporate the Portal Template into Service:

1. Include the URL path used to reference the Cascading Style Sheets

2. Include tags (selectors/elements) in applications to define the attributes to be implemented
3 Include the URL path used to reference the Cascading Style Sheets

The Service Developer must reference the style sheets at the top of their web pages, between the “header tags”.

For example:

<HEAD>

<LINK REL='stylesheet' HREF='/servlet/media/templates/’ & <ClientStyle> & ‘/styles.css' TYPE='text/css' title=’TEMP_STYLES’>

</HEAD>

The above referenced style tag will be an attribute defined in the PRIDataRequest as ClientStyle. If the Service Developer chooses to incorporate the user’s look and feel into their application, the line above will need to be included in each page. (See Table 7-1)

3 Include tags (selectors/elements) in applications to define the attributes to be implemented

In addition to referencing the user’s specific CSS, the Service Developer will also need to reference each style tag (Elements) as defined in the CSS.

For instance, below is HTML that may be in the Service Developer’s current web application:

<Table>

 <tr>

<td>Welcome, John Doe!</td>

 </tr>

</Table>

Assuming the CSS is referenced at the top of the page, the above would be replaced with:

<td class=”welcome”>Welcome, John Doe!</td>

where CSS tag “welcome” is defined in the stylesheet as:

.welcome

{

 COLOR: blue;

 FONT-FAMILY: arial, verdana, helvetica;

 FONT-WEIGHT: bold;

 FONT-SIZE: 10px

}
The value in using the CSS, is that if changes to the rendering are needed, e.g. fonts, colors, margins, typefaces and other aspects of style, on a web application, only one change is made in the CSS, rather than in all pages that use these styles.

How to reference specific the style tags defined by the CSS:

Below are a table and screenshots that demonstrate how to implement the style tags in the CSS. The table lists all of the elements and classes as defined by all style sheets used in the portal. The attributes for these elements and classes will change depending on the template chosen, however the code will not need to be modified once classes are referenced. The attributes listed below are one example of a template available on the portal. The screenshots map out where these have been used in a template for the portal. These may be used as a guideline for Service Developers to reference when adding the class names to their web applications.

Table 3-5: Style Tag Descriptions for Style Sheets
	Element/Class
	Description
	Attributes
	How to reference

	 A
	Hyperlink
	COLOR: #0163e4;

FONT: 10pt univers, verdana, arial, helvetica, sans-serif;

TEXT-DECORATION: none
	No additional code needed

	td

	Table Data
	FONT: 8pt univers, verdana, arial, helvetica, sans-serif
	No additional code needed

	th

	Table Header
	FONT: bold 10pt univers, verdana, arial, helvetica, sans-serif
	No additional code needed

	contentheader
	Header
	COLOR: black;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 12px
	class=”contentheader”

	currentdirectory
	
	COLOR: #a9a9a9
	

	explorerbg
	Background Color
	BACKGROUND-COLOR: #8CAAE7
	class=”explorerbg”

	explorertabindicator
	
	FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 12px;

TEXT-DECORATION: none
	class=”explorertabindicator”

	explorertablebg
	
	BACKGROUND-COLOR: #f3f3f3
	class=”explorertablebg”

	file
	File font
	COLOR: darkblue;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 11px
	class=”file”

	fileselected
	Selected File
	BACKGROUND-COLOR: #FF9933;COLOR: #ffffff;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 11px
	class=”fileselected”

	folder
	Folder Name
	COLOR: #666699;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 11px;

FONT-WEIGHT: bold
	class=”folder”

	folderselected
	Selected Folder
	BACKGROUND-COLOR: #FF9933;
	COLOR: #ffffff;

	font1
	Font option
	FONT: 12pt univers, verdana, arial, helvetica, sans-serif
	class=”font1”

	font2
	Font option
	COLOR: #919191;

FONT: 14pt univers, verdana, arial, helvetica, sans-serif
	class=”font2”

	font3
	Font option
	FONT: 8pt univers, verdana, arial, helvetica, sans-serif
	class=”font3”

	libraryselected
	Selected Library
	BACKGROUND-COLOR: #FF9933;
	COLOR: #ffffff

	librarypath
	Background color option
	BACKGROUND-COLOR: #f3f3f3
	class=”librarypath”

	lightwash
	Background color option
	BACKGROUND-COLOR: #f3f3f3
	class=”lightwash”

	mediumwash
	Background color option
	BACKGROUND-COLOR: #f3f3f3
	class=”mediumwash”

	menuitem
	Menu Items
	COLOR: white;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 11px;

FONT-WEIGHT: bold
	class=”menuitem”

	menulink
	Menu Link
	FONT: 14pt univers, verdana, arial, helvetica, sans-serif
	class=”menulink”

	message
	
	BACKGROUND-COLOR: ##EFEFEF;

COLOR: black;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 16px
	class=”message”

	mout
	Mouse Out
	COLOR: darkblue
	class=”mout”

	mover
	Mouse Over
	COLOR: red
	class=”mover”

	na
	
	COLOR: #2a71ac;

FONT: bold 10pt univers, verdana, arial, helvetica, sans-serif
	class=”na”

	nc1
	
	BACKGROUND-COLOR: #c9e6ff
	class=”nc1”

	nc2
	
	BACKGROUND-COLOR: #f3f3f3
	class=”nc2”

	nh
	
	COLOR: #919191;

FONT: 15pt univers, verdana, arial, helvetica, sans-serif
	class=”nh”

	notselected
	
	BACKGROUND-COLOR: #ffffff;

COLOR: #385273
	class=”notselected”

	selected
	Selected Option
	BACKGROUND-COLOR: #ffffff;

COLOR: #666699;

FONT-FAMILY: univers, verdana, arial, helvetica;

FONT-SIZE: 11px;

FONT-WEIGHT: bold
	class=”selected”

	title
	Title
	COLOR: #333366;FONT: 18pt univers, verdana, arial, helvetica, sans-serif
	class=”title”

	toolbar
	Toolbar
	BACKGROUND-COLOR: #6BA8E6
	class=”toolbar”

	upload
	
	BACKGROUND-IMAGE: url(/servlet/media/images/base/toolback.gif);

VERTICAL-ALIGN: top
	class=”upload”

	white
	
	COLOR: #ffffff
	class=”white”

	wpadvice
	Large Instructions
	COLOR: #555555;

FONT-FAMILY: univers, verdana, helvetica;FONT-SIZE: 24px;

FONT-WEIGHT: bold
	class=”wpadvice”

	wpcontentlist1
	
	BORDER-BOTTOM: #6666CC;

BORDER-LEFT: #6666CC;

BORDER-RIGHT: #6666CC;

BORDER-TOP: ##EFEFEF
	class=”wpcontentlist1”

	wpcontentlist2
	
	BORDER-BOTTOM: ##EFEFEF;

BORDER-LEFT: ##EFEFEF;

BORDER-RIGHT: ##EFEFEF;

BORDER-TOP: ##EFEFEF
	class=”wpcontentlist2”

	Wpdefaultcursor
	Default cursor style
	CURSOR: default
	class=”wpdefaultcursor”

	wpelemtoolbar
	
	COLOR: #ffffff;

FONT-FAMILY: univers, verdana,arial,sans-serif;

FONT-SIZE: 8pt;

FONT-WEIGHT: bold
	class=”wpelemtoolbar”

	wpoptions
	Options
	FONT-FAMILY: univers, verdana,arial,sans-serif;

FONT-SIZE: 8pt;

FONT-WEIGHT: normal;

TEXT-DECORATION: none
	class=”wpoptions”

	wpselectedtitle
	Selected title
	BACKGROUND-COLOR: #8CAAE7;

COLOR: #ffffff;

FONT-FAMILY: Arial, Helvetica, sans-serif;

FONT-SIZE: 9pt;

FONT-WEIGHT: bold;

TEXT-DECORATION: none
	class=”wpselectedtitle”

	wptitle
	
	BACKGROUND-COLOR: #e5eaee;

FONT-FAMILY: univers, verdana,arial,sans-serif;

FONT-SIZE: 8pt;

FONT-WEIGHT: normal;

TEXT-DECORATION: none
	class=”wptitle”

	wptoolbar
	Toolbar
	BACKGROUND-COLOR: #e5eaee;

FONT-SIZE: 9pt;

FONT-WEIGHT: bold
	class=”wptoolbar”

	wptreetop
	Background image
	BACKGROUND-COLOR: ##EFEFEF;

BACKGROUND-IMAGE: url(/servlet/media/templates/16/images/background.gif);

COLOR: white
	class=”wptreetop”

[image: image9.jpg]ZANEP Portal: Frameset - Microsoft Internet Explorer

| ek - S - @[3 A | Qoearch Giravortes Phisoy |- S -EH & D

| tess [T i stosensscz o1 sevietprtlesa

Help | Lt

BT Proverties Create Folder Publish File
b Library Hide Descriptions

Name Postings Date Options
3 Applications 0 11/1/01
23 Home i} 10/29/01
23 NMCI Services i} 10/29/01
[E operations i} 10/29/01
(1 sample Code 0 10/29/01
23 TFW Services i} 10/29/01
[users i} 10/29/01
[9) Display Request Headers 0 10/29/01
@ eps 0 10/29/01
(91 Hello world 0 10/28/01
3] Simon Says o 10729701

1 o shiseinss2:7001 servietportalfexplrerIfoker 194 [EELominwans

Figure 3-6: Style Sheet diagram for Infostore

[image: image10.png]=181

| ok - 5 - @) 4| Qesch Cilravorkes (ristory | 5ye S

[ress [T wpstesenssaz 7ot sevetfporeloxporeesemd=startup

Help | Lt

5 ISy Services 1y Appliations 1y Operatins

S

New | Manage | Configure | Reset | [212]

Drag content from the tree
into this workplace.

BIoispiay request Headers
Bleos

Bhtetio world

Bisimon says

[[[Localintranet

Figure 3-7: Style Sheet diagram for Workplaces
3 Portal Friendly Service Development

Service Developers may need to modify existing application code to have the service work properly in the TFWeb Portal. They may need to modify the application code to ensure the service works appropriately when accessed via Reverse Proxy from within the Portal Framework.

The Portal Connector reverse proxy feature handles the reconfiguration and rewriting of links to properly flow back through the portal infrastructure, but there may be potential reverse proxy issues with “absolute paths” versus “relative paths”. Some development may be necessary if the paths are generated dynamically or programmatically.

These service development recommendations can be considered by the Service Developers to ensure a portal friendly interface between their application and the TFWeb Portal.

3 Reverse Proxy

When the Portal Connector is used to proxy access to URIs in web content, it does so by re-writing the links to redirect connections back through the portal. This allows a single access point through the portal through any firewalls, and ensures that content is managed through the portal interface. The Portal Connector examines the HTML on a web page and looks for certain key tags. When it encounters one of these tags, it prepends a call to the Portal Connector to the URI. When the Portal Connector gets a call of this type, it sets up an HTTP client session and requests the content on behalf of the user. The content is then examined for URIs to re-write and forwarded on to the user.

While this is a powerful capability, it does require that application/service developers be aware of certain limitations.

1. The Portal connector must be able to identify the link to re-write it. The connector identifies the following HTML tags for re-writing:

HREF=

SRC=

URL=

BACKGROUND=

ACTION=

All other methods for producing links, especially those that rely on client side code or code imbedded in objects is not supported and will result in an application being considered as “Level 1” integration. The filter cannot handle links it can't find to re-write.

2. It is good design practice to use relative links within HTML for specifying some links. This means that the object being referred to is at a location relative to the page being displayed. For example:

refers to a graphics image in a folder one level below where the HTML is located. In many cases, the Portal Connector can accurately rewrite these references. To do so, it must be able to establish the "base" URL. This can be determined in most cases for “Level 2” integrated applications as the header contains a document reference that can be prepended to the relative link. For “Level 3” integration, the Portal Connector has no idea of the URI to the content that is presented, so the use of the header tag "BASE HREF=" is required in the HTML header:

<HEAD> <TITLE>Page Title</TITLE> <BASE HREF="http://homeport.nmci.navy.mil/html/"> </HEAD>

This allows the Portal Connector to establish the URL base as defined in:

· Section 12 of the HTML 4.1 standard (http://www.w3.org/TR/html4/)

· RFC 1808 Relative Uniform Resource Locators

· RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1

As defined in the HTML standard, an undefined or underivable base will result in an unresolvable URI and a "broken" link.

For example: if the folder structure on this site looked like the following:

http://homeport.nmci.navy.mil

/---

 |

 --- html

 |

 --- images

and the current document resides in the html folder,relative links should look like this:

 Next Page

When rewritten by the Portal Connector, the links would look something like this:

Next Page

3 Impact of Reverse Proxy by Integration Level

Hyperlink Integration (Level 1)

No HTML in “Level 1” applications is affected by the Portal Connector as all content, other than the initial hyperlink, occurs in communication directly between the client browser and the application/web server.

Presentation Integration (Level 2)

All HTML in “Level 2” applications is run through the Portal Connector. The base URL is derived from the path to the page in which the link is embedded. If an application developer suspects that the proxy may not be able to detect the proper base, the base should be explicitly defined using the <BASE HREF=tag>, as defined above. URIs generated on the client side cannot be proxied under any circumstances.

Application/Data Integration (Level 3)

URIs produced by “Level 3” Service Modules are required to explicitly state the base URL. (see above). URIs generated on the client side cannot be proxied under any circumstances.

3 How will User Browse / Access the Portal Connector

The Portal Connector is published in the InforStore (Library) under a specified folder in the Portal Connector Taxonomy. The user will drag and drop the Portal Connector from the InfoStore (Library) onto a workplace.

[image: image11.png]A HOMEPORT PORTAL

rosoft Internet Explorer pr

d by EDS COE

MEIE

| Be £t Vew Fowrtes Iods o
J¢.¢>.° ‘@ 8‘%-@- . 2 2
B pa | 5% GEeh o | G5 mow G | bE 5n

Pt

Edt

Discuss_ Realcom Messenger

| Adtes [€1 s usrsimso02.8080 Poscn-ctoa

=l et

Channels _ Library
SLibrary
S applications
EDSHET
“Home

Bloon career Enhancement
quipment
Iy Seabag
aval History
ews and Periadicals
Blywes
Blstatus of the Navy
united States Naval Academy
FINMCI Services
Foperations
sample Code
STFW Services
irew eroom
Bappication Help Sample k1L docum
lapplication Help KSL Style Sheet
s
hello world

STRIRE
FORGE

5@

Find infarmation aboutthe
Departrent of the Navy's
visionary Nawy Marine Corps
Intranet (NMC) prograrm.

Click here

Find Infarmation about Naval
Network Operations
Cammand NMCI Directorate.

Click here

sarch [@

Help | Logoff

"~ MyProfile

Equipment i

(5 Localnvaret

Figure 3-8: Portal Connector Library Screen Shot

At this time the Portal Connector will try to connect to the service and if the user has access to the service then the data will be displayed to the user. If the service is not available to the user (no permission) then a standard form will be displayed to the user stating the service owner contact information so that the user can contact the service owner and request access.

[image: image12.png]Level 3 Integration

You are not authorized for this Service

Service Display Headers

Contact B. A Geoffioy
Phone 1234567650
Email bag@bag net

Please submit this form to request access

User alex
Name

Phone

Email

Submit

Figure 3-9 Portal Connector Request for Access Form

3 Aids for Application/Service Developers

3 Portal Connector Stub (PCS)

Portal Connector Stub (PCS) comprises of simple web pages that simulate the behavior of the Portal Connector. It allows the application developers to test out the service interfaces without needing to install the Portal Server at their development sites.

Developers will use a web server and the PCS at their site. The application owners develop and test their application interfaces with PCS following which they submit the service for integration testing and certification.

For more details please refer to Section 10.2.

4 Web Services-Based Architecture

Web services is a term that defines a service-based infrastructure where application functionality can be identified, located, and accessed by users, or other applications, dynamically in near-real time. These services are implemented as software components, with no affiliation to a particular development platform or language. Information about these services, such as location, access methods and description, are housed within a global service metadata registry. Discovery and interaction with these services will be based on open, industry standards to ensure interoperability across applications and platforms. Numerous protocols either have already, or are in the process of being, defined to support web services, such as the Universal Description, Discovery and Integration (UDDI) registry standard and the Simple Object Access Protocol (SOAP) XML messaging standard.

The Enterprise Portal supports web services through the application and information services layer, which consists of Enterprise Service Registry and the Enterprise Module Server. This architecture provides some of the advantages of web services to all of the defined levels of application integration. However, only Application/Data Integration (Level 3) implements web services using the components of the architecture to their fullest capability.

4 Key Concepts

The following are some key concepts of a web services-based architecture:

· The ability to browse through a common registry of available services

· The ability to access services using common, ubiquitous Internet communication protocols, such as HTTPS

· The most fundamental underpinnings of the Web Services architecture is XML messaging. The current industry standard for XML messaging is SOAP.

4 Service Module Definition

A Service Module is a lightweight application connector that reveals some piece of application functionality and makes it available, in a web-enabled format, to end-users through the portal. A Service Module does not contain application business logic. Application business logic and data continue to reside within the application or its existing data store.

Application owners are responsible for creating and maintaining the Service Modules and their back-end applications and services. These may be created using any capable application server platform or language, but they must conform to the TFWeb requirements.

4 Module Server

The Module Server is a platform for the integration of applications with the Enterprise Portal. It is not a platform for hosting application business logic. Application business logic will continue to remain within the applications themselves.

The logic for communicating with the applications resides within the Service Modules. The Module Server is the container for these Service Modules. The Module Server is conceptually a single, logical construct, but physically it resides in multiple, distributed locations at multiple levels within the enterprise.

The Enterprise Module Server consists of Microsoft Internet Information Server 5.0 (IIS), and BEA WebLogic 6.1 application servers. These application servers are the host platforms for Service Modules implemented using Active Server Pages (ASP), Common Gateway Interface (CGI) with either Windows compliant C++ or Perl, and Java 2 Enterprise Edition (J2EE) (including Java Server Pages, JSP). The application developer may develop modules for either Module Server environment as best suited to the application requirements. All of the Service Modules must conform to TFWeb interface standards. See Section 9 for detailed instructions on coding standards.

[image: image13.wmf]Enterprise Module Server

Internet Information

Server 5.0

BEA WebLogic 6.1

CGI

Modules

ASP

Modules

J2EE

Modules

Figure 4-1: Enterprise Module Server

4 Enterprise Module Server

The Enterprise Module Server (EMS) provides an environment for application developers to host Service Modules near each portal instance. These Service Modules must conform to all TFWeb information assurance requirements, certification and accreditation requirements, portal and application interface standards, and naming standards. The EMS systems also provide integration with the Single Sign-On (SSO) authentication.

The Enterprise Module Servers are designed to be high-availability, and highly scalable.

4 Local Module Servers

The Local Module Servers (LMS) provides an environment for application developers to host Service Modules on non-TFWeb controlled systems. A LMS may be hosted at the claimant or local level. All LMS hosted Service Modules must conform to the same TFWeb information assurance requirements, registration process, certification and accreditation requirements, integration requirements, portal interface standards, and naming standards as any EMS hosted Service Module.

4 Enterprise Service Registry

The service registry is a globally distributed registry of web services information. Conceptually, the information provided in the registry consists of “white pages” and “green pages” for web services metadata. The UDDI data model has been selected as the basis for the TFWeb implementation. This model, as applied here, uses “white pages” entries to describe the application owner contact information at the Echelon level, while the “green pages” describe the services that can be accessed, including such things as the service name, description, service key, and URI. The term “white pages” when, used in the UDDI registry context, should not be confused with the “Navy/Marine Corps White Pages Directory”.

The Enterprise Service Registry is conceptually a single, logical construct, but physically it resides in multiple, distributed locations at multiple levels within the enterprise. The registry is operated as a private UDDI registry. It does not exchange information with other UDDI registries outside of the Enterprise.

As services are deployed to the Module Server, they are registered in the service registry. This enables the Portal Connector to query the service registry to locate the available services.

[image: image14.wmf]Enterprise Service Registry

White

Pages

Green

Pages

UDDI Schema

Figure 4-2: Enterprise Service Registry

Developers have the capability to browse and search the list of services that reside in the registry. See Figure 4-4 and Figure 4-5 for an example view of the developer’s Registry Browse Tool. Portal end-users have a different view of this information provided to them through the portal. Developers and end-users do not have the capability to directly add, update or modify the contents of the service registry. The service registry administrator is responsible for adding, updating and maintaining contents of the service registry. Modifications to registry contents must be submitted as a request to the service registry administrator. The application owner supplies the metadata, and the administrator ensures that the application certification process is completed before the service is registered.

The metadata in the registry describe the application owners and their Service Modules. The relationship between white pages, green pages, and Service Modules is shown in Figure 4-3. Each application owner (white page) entry may have one or more registered services. Each service registration (green page) entry describes a service (a Service Module or backend application services). Each application may comprise a number of Service Modules and/or service interfaces.

See Section 8 for the details of the registration process.

[image: image15.wmf]Enterprise Service Registry

White Pages

Green Pages

Enterprise Module

Server

Application

Owner 1

Metadata

Application

Owner 2

Metadata

Service 1

Metadata

Service 2

Metadata

Service 3

Metadata

Service 4

Metadata

Service

Module 1

Service

Module 2

Service

Module 3

Service

Module 4

Describes

Describes

Describes

Describes

Figure 4-3: Relationship between Registry Metadata and Service Modules

[image: image16.png]UDDI Services Registry
Universal Description, Discovery and
Iintegration

Full Echelon Registration Report

Echelon Informal

_Echelon Information

Echelon Name Description

Business Key [FGEC2CRE-Cab7-49A2- BAL4-83325E 64IACE

Autharized Name operator

Echelon Contacts

_Gontact Information

I~ Contact

Cantact Name Description

Address:

Email

Phane

I~ Contact

Cantact Name Description

Address:

Email

Phane

Figure 4-4: Registry Browse Tool – Application Owner Metadata

[image: image17.png]Echelon Applications

_application Informatio

Application Description
Name

Aeelication Kev - [E33CaAT F2F7 4508 6504 SBACOFT 1080 |

5518D74E-BDOF-4073-ABF5-E7DAG2B2FED6

| web Service Informati

Access Description
Point hittps://services.navy.mil /serviets/SS18D74E~
BDOF-4073-ABF 5-E7DAS2B2FBD6/default. jsp

P
Redirectar

[~ Technical Specification: 9584A0E4-BBCC-4ED2-BC3B-52794D03DEOC

Technical Instance

Specification Deseription

Instance Parameters overview
Document

Overview URL

[Technical Specification: 9584A0E4-BBCC-4ED2-BC3B-52794D03DEOC

Semeaton accessPoiniAddendun Seserpton
Instance Parameters = Overview
iyParam=34 Querview

Overview URL

Web Service Informa B747B5C-52D8-417B-93DC-420BB40842AC

Access Description
Point https://services.navy.mil /6B74785C-52D8~
4178-33DC-420BB40842AC/entrypoint. asp

Hostng [
Redirectar

Figure 4-5: Registry Browse Tool – Application and Service Metadata

5 Enterprise Portal Taxonomy

Navy web enablement is the implementation of interoperable web technologies across the Naval infrastructure allowing subscribers and publishers (users and providers) of content to pull or push services as required to perform operational or business transactions. A Navy web transaction is the execution of a web-service. The service centric access for the Navy is depicted in Figure 5-1.

[image: image18.wmf]Databases and Repositories and Applications

Operations

C2

Chat

Weather

ATO

Calendar

Logistics

RMP/COP

Business

Purchasing

Education

Telecommunications

Personnel

Medical

MWR

Finance

NAVY PORTAL

NAVY PORTAL

Figure 5-1: Service-Centric Access

This section will discuss guidance and structure for the TFWeb Portal taxonomy. This will provide developers with the appropriate background to plan their application migration efforts.

At the highest level, the taxonomy represents the basic set of categories for Navy information sources. The information involved may be core to the function being performed, or to some other functional area. The TFWeb Portal System facilitates the sharing of information between commands and across functional areas. The Department of Navy Chief Information Officer (DoN CIO) has identified broad information content categories that reside within the enterprise. Table 5-2 identifies the initial, high-level set of categories.

Table 5-2: Initial TFWeb Portal Taxonomy

	Functional/Resource Area
	Program/Resource Sponsor

	Acquisition
	SECNAV RDA/ MARCORSYSCOM

	Finance
	SECNAV FM&C/ HQMC P&R

	Civilian Personnel
	SECNAV CP/ HQMC AR

	Administration
	OPNAV N09B/ HQMC AR

	Manpower and Personnel
	OPNAV N1/ HQMC MR&A

	Intelligence and Cryptology
	OPNAV N2/ HQMC I

	Logistics
	OPNAV N4/ HQMC I&L

	Readiness
	OPNAV N4/ HQMC PP&O

	Command, Control and Communications
	OPNAV N6/ HQMC C4

	Information Warfare
	OPNAV N6/ HQMC PP&O

	Allies
	OPNAV N6/ HQMC PP&O

	Modeling and Simulation
	OPNAV N6/ MCSC SE&I

	Weapons
	OPNAV N7/ MARCORSYSCOM

	Training
	OPNAV N7/ TECOM

	Resources, Requirements, and Assessments
	OPNAV N8/ HQMC P&R

	Scientific and Technical
	OPNAV N091/MCCDC

	Test and Evaluation
	OPNAV N091/ MCOTEA

	Medical
	OPNAV N093

	Naval Reserve
	OPNAV N095

	Meteorology, Oceanography, MC&G
	OPNAV N096

	Religious Ministries
	OPNAV N097

	Naval Nuclear Propulsion
	OPNAV N00N

6 Security

6 Security Definitions

A few terms are used in this section that are, at times, confusing or are used in a more generic manner in a broader context. These definitions refer specifically to the TFWeb Single Sign-On (SSO) environment.

· Authentication. The process of verifying that a user is, in fact, the user they claim to be. Authentication in the TFWeb Pilot will be based on userID and password credentials. Future implementations will include the use of DoD PKI X.509 identity certificates for authentication. The process of authentication does not grant the user with any particular rights.
· Authorization. The process of determining what rights are granted to a user based on the user’s authenticated identity.
6 TFWeb Single Sign-On Security Architecture

The SSO solution for the TFWeb architecture:

· Acts as a central point of authentication for Enterprise Portal users,

· Provides a framework for authenticating users which will enable a Navy-wide web SSO implementation by Application owners,

· Authorizes the use of Portal services and Applications based on dynamic security policies configurable by Application owners,

· Utilizes the enterprise Active Directory architecture by replicating users, user attributes, and security groups to establish Portal security policies.

The SSO solution provides a single, unified mechanism and interface for controlling access and security across platforms, applications, and Web servers. More specifically, SSO authentication and authorization solution provides centralized management across platforms and vendors, delegated user management, rules-based access control, and support for multiple forms of authentication.

The SSO solution will provide a framework to allow Navy Portal users to move seamlessly across the Portal web servers and Applications without having to re-authenticate each time they click a new link. Their authentication information is passed on to other SSO components via an encrypted temporary session cookie. SSO depends on the storage of authentication information in the encrypted temporary session cookies. At runtime the SSO web server agent communicates with the SSO Server, which can encrypt and decrypt the temporary session cookies. Therefore, a SSO web server agent can always decrypt a cookie generated by itself or any other Web Server Plug-in in the system, and can authenticate using stored information rather than re-prompting the user for credentials.

[image: image19.png]Service Module
Gormmurications

Welo Fortal Enterprise More

Server Server (EMS)

UserlDand P

)

Server

To 850 seners

Appcaton
inother stes Aosess Cortos,
© Audiing and
logsing,and

locaized sesurity
mechanisis Legaey Aplcations

Figure 6-1: TFWeb Security Architecture

6 Role of the Directory in SSO

The enterprise-wide TFWeb Active Directory architecture is the basis for all Navy Portal SSO operations. The TFWeb directory architecture will be replicated/synchronized across the Navy enterprise, and will be collocated with the Portal architecture components. This directory architecture will also extend to include Navy afloat ship platforms.

The primary function of the TFWeb Active Directory architecture is to provide a centralized location for the authentication and authorization of all Navy and United States Marine Corps (USMC) users to the TFWeb Portal architecture.

In order to be the centralized source for all user authentication, the TFWeb directory will establish global unique user identifiers for all registered Navy and USMC TFWeb users, both afloat and ashore. Eventually, these user identities will be based on the flat SMTP name space being fielded by the NMCI (e.g., joesph.user@navy.mil, joesph.q.user@navy.mil, jane.user@usmc.mil, jane.j.user12@usmc.mil). Every user will be assigned a new unique ID in the flat name space that will remain theirs, regardless of their location within the Navy or USMC organizations. During the Pilot, TFWeb will use a temporary flat name space for non-NMCI users (@tfw.navy.mil and @tfw.usmc.mil) in combination with the NMCI flat name space. As Pilot TFWeb users transition to the NMCI and are issued IDs in the NMCI flat name space, this new ID will replace their TFWeb ID.

Authentication of users to the TFWeb Portal and its Applications will be based on the flat name space userID. The SSO server will perform authentication of a user’s identity directly against the TFWeb Active Directory.

The TFWeb Active Directory will also be the centralized source for authorizing user access to TFWeb Applications. Active Directory groups will be defined determining a user’s ability (or inability) to use a particular Portal Application. The SSO server will utilize these groups in allowing or denying users access to the Portal and its Applications.

The TFWeb directory service is the initial implementation of an enterprise-wide directory to support Navy and USMC applications, such as the WEN. The TFWeb directory is the basis for, and will eventually evolve to become, the larger Naval Global Directory Service (NGDS). The NGDS will provide enterprise-wide services such as TFWeb authentication, location of Navy and USMC personnel (Navy/Marine Corps White Pages), and convergence of NMCI and IT-21 directory services into a logical global directory

6 TFWeb Security Model

The TFWeb architecture will follow an 'Allow then Deny' approach to security for the Portal and backend Applications, i.e., all of the services in the Portal are visible to (nearly) all of the users. A minimum number of Portal workgroups will be created to define which Portal connectors certain user groups will be able to see. Each group will define a large number of connectors that the users will be able to see. Based on DoN policy, there may be a very few exceptions (in case of very high security applications), where the Portal connectors will only be visible to a few authorized users. Thus, the majority of the portal connectors will be visible to all the workgroups in the Portal.

Portal users can arrange the Portal connectors on their workspace of choice by dragging and dropping them into their display. At this point in time, the Portal connector will try to connect to the underlying Application by sending an HTTPS request to the Application’s URI on the EMS server (HTTPS is defined in section 6.3.1). The SSO web server agent on the EMS server will then either allow or deny access based on the user’s rights to the Application as defined in the Entitlements Database. Thus, in some cases, even though the Portal connector is visible to the end user, the actual contents of the Application may not be available. The user will need to request access to the Application from its owner.

In case of an Application’s Portal connector, access control is achieved through the security policies set in the SSO server. The SSO web server agent installed on the EMS server will challenge any requests for Applications and allow or deny access based on the security policies set for the Application. It is the Application owner's responsibility to provide the necessary information to the directory and SSO administrators to set the Access Control List (ACL) policy for the Application. This information will consist of the Application’s name, and the definition of all users that require access to the Application. This definition of users will be based on user’s names (the exact information required from the Application owner is specified in section 6.7.1). Once the authorized users are defined, the directory administrator will create an Active Directory group that, in conjunction with the SSO product, will allow access to the Application.

6 TFWeb System Security Policies

A number of security policies apply to the end-to-end TFWeb architecture, and effect how applications must operate in order to participate in the TFWeb Portal. This section states and describes these security policies.

6 HTTPS Secure Sockets Layer (SSL) Communications

The entire TFWeb architecture, from the Portal user’s browser, to the back-end Application web server, shall utilize encrypted communications over 128-bit secure sockets layer (SSL). For HyperText Transfer Protocol (HTTP) communications, this will be by means of HTTP over SSL, port 443. SSL shall be implemented by means of DoD PKI Class 3 certificates on both the NIPRNET and SIPRNET architectures. DoD PKI Local Registration Agents (LRA) should be readily available to issue PKI server certificates on the NIPRNET. Application developers/owners who need assistance in acquiring a DoD PKI certificate on the SIPRNET should contact their TFWeb AMCS representative.

Of particular importance to Application owners in the interface between the EMS and their Application web server. For all levels of integration, this interface must support at least one-way (server-side authenticated) SSL communications. Based on the needs of the Application, the developer may choose to implement a two-way SSL (client and server authenticated) communications path between the EMS and the Application web server.

Client-authenticated HTTPS communications will be required by all shore users to enter the NMCI TFWeb enclave and access the TFWeb Portal. This will require that all shore Portal users have a DoD PKI issued identity certificate from the Class 3 PKI. Users should contact their command’s LRA or their TFWeb AMCS representative for assistance in getting the required PKI certificates.

6 Mobile Code Use Policies

The UNCLASSIFIED information is documented in the Navy-Marine Corps NIPRNET Enclave Protection Policy, dated 30 Nov 2001. Please refer to the full CONFIDENTIAL policy statement posted at http://www.infosec.navy.smil.mil under Fleet Documents and Information. The UNCLASSIFIED policy can be found at https://www.infosec.navy.mil under Fleet Documents and Information.
6 Limitations of TFWeb Single Sign-On

The basic intention of the SSO solution is to eliminate the need to re-authenticate to web Applications any time a user accesses more than one portal Application in the same session. The hope is that the user only provides their credentials (userID and password) once to access the Portal, and will not be required to re-authenticate when using any of the portal Applications.

However, because most web SSO products use cookie technology to pass user’s authenticated identity from the user’s browser to web servers, there is a known limitation to the SSO. The limit is the Internet domain boundary. That is, cookies originated in one domain (e.g., navy.mil) will not be passed to web servers in other domains (e.g., usmc.mil or any .com domain).

Therefore, if a user authenticates to the Portal in the navy.mil domain, and accesses an Application in the usmc.mil domain, they will be required to re-authenticate to that domain. However, once the user has authenticated in the second domain, he or she will not be required to authenticate in that domain a second time.

6 Application Access Control Mechanisms

6 SSO Application Access Control Mechanisms

SSO provides a very important component of the overall enterprise TFWeb system security. The Web Enabled Navy architecture endeavors to provide Navy and USMC users with a single point of access to all web enabled applications. SSO provides the top-level, enterprise security mechanisms to provide an integrated TFWeb Naval web application environment, even though these web Applications will continue to be developed and maintained by multiple Naval organizations.

The SSO mechanism is important to provide an integrated view of the TFWeb Applications. The SSO server and TFWeb Active Directory architecture will act as the central point of authentication for all Enterprise Portal users. The goal of the Navy Portal is that this initial authentication of the Portal user should be the only authentication necessary for use of all the TFWeb Applications. This is because the SSO mechanism can pass authenticated user identities to the Portal, and all backend web Applications, for their use in assigning rights and roles within the Applications.

SSO will provide the first point of authorization for use of the Portal and all portal Applications. SSO provides the means to approve or deny access to portal Applications (as represented by the web URLs pointing to those Applications), but cannot provide users with detailed rights to the underlying Application. For example, SSO can authorize an authenticated user to access an Application that utilizes an internal database, but cannot specifically grant or deny the user the right to read, write, or administer the database itself. Local security for the Application is still the responsibility of the Application developer.

Lastly, the SSO shall perform auditing and logging of failed and successful attempts to access the Portal and portal Applications.

6 User Passwords

Each user in the TFWeb Active Directory will have a password. Initially, TFWeb administrators will assign complex passwords to all users. A Portal application will be provided to allow users to interactively change their password based on Active Directory and DoD Password Policy guidelines.

In the future, the SSO will support other forms of authentication, such as DoD PKI X.509 Certificate authentication, but the Pilot implementation will be concentrating on the userID and password combination. Whenever a password is passed over the network or stored on disk there is a risk that password may be stolen. In order to reduce the likelihood of password theft, TFWeb is using multiple mechanisms:

· Passwords are stored in Active Directory using a Kerberos encrypted password store, making the original password unrecoverable.

· Passwords are never stored, in clear text or encrypted, anywhere but the Active Directory user store.

· Passwords are always sent over SSL encrypted network connections from the user’s browser, to the SSO web server agent, to the SSO server.

· Authentication of a user’s ID/password credentials is actually performed by the SSO server, which will be installed resident on the same physical hardware as the Active Directory user store.

6 Legacy Application Access Control Mechanisms

As stated above, SSO will provide enterprise-level security, including authentication and authorization to access the URL on the EMS server that defines the ‘home page’ for a portal Application. However, it is the responsibility of the Application owner/developer to provide local security, at the Application level. This security includes determining the process by which users are authenticated and authorized to the legacy Application.

To participate in the overall SSO solution for TFWeb, Application developers must:

· Determine the means by which users will be authenticated to the legacy Application through the Portal (see section 6.6.3)

· Map TFWeb userIDs to the Application’s internal user rights database (for legacy Applications) or develop a user rights database using the TFWeb userIDs (for new Application development)

· Provide TFWeb SSO administrators with a list of users authorized to use the Application (see section 6.7.1).

· Authorize user’s rights to internal Application processes or databases based on the authenticated userID provided by SSO.

In particular, the Application must assign all rights that are necessary internal to the Application. Examples of these user’s rights include: allowing users to modify data, providing access to portions of internal databases, and administering other user’s rights.

Application developers must also continue to provide sound local security for their web servers and Applications. This local security may include mechanisms such as applying all appropriate patches for the operating system and web server software, providing full support for encrypted web communications (i.e., HTTPS) using DoD PKI server certificates, and protecting the web server and Application from common hacker attacks such as IP spoofing and denial of service. The Application must also provide local auditing and logging of access attempts and invocations of user rights.

Security certification and accreditation of the Application as a stand-alone service (following all pertinent Navy guidelines and policies) remains a responsibility of the Application developer. Applications that are not accredited will not be allowed to take part in the TFWeb architecture.

Refer to Appendix A: DoD Authority References for a complete list of Navy and DoD security policies to be followed.
6 Legacy Application Authentication Options

To implement SSO, the SSO server relies on encrypted temporary session cookies to securely pass authenticated user IDs between web applications. SSO also provides a means to pass authenticated user IDs through the HTTP request header fields (see Section 6.7.2). However, TFWeb recommends that Application developers do not use this data as a means to automatically authenticate users to their Application. Because this data may possibly be spoofed, it should not be trusted as an authentication means, but may be used to provision “familiarity” services, such as a personalized splash page, etc.

This leaves Application owners with a few options to authenticate users to the Application, as described below.

· Re-Authenticate Users: During the TFWeb Pilot timeframe, the Application owner may choose to re-authenticate users accessing their Application through the Portal. As this solution does not lead to the goal of end-to-end SSO for the Portal, the Application owner will be asked to migrate to the fully integrated SSO solution once it is determined.

Application developers may be required to change the interface through which users authenticate, even if the backend authentication process remains the same. Two interfaces are acceptable for integration into the Portal:

In-Line HTML Form: The Application should present the user with an HTML form requesting credentials. This form should be designed in-line with the rest of the Application’s interface, and should not be a new pop-up browser window. Level 3 integrated Applications are required to implement HTTP BASIC authentication over SSL, or better.

Dialog Boxes/Child Browser Windows: This is the less preferred, but acceptable authentication interface. The Application may present the user with a system-generated dialog box requesting credentials. However, this dialog box MUST uniquely identify the Application that is asking for credentials to differentiate it from any other dialog boxes in use.

· Implement SSO Web Server Agent: Application owners may choose to implement a SSO web server agent on the legacy Application’s web server. Using the SSO web server agent will tightly integrate the Application with the Portal SSO solution, which is the long-term goal. There are no licensing issues related to using the SSO web server agent, but there are some technical limitations. See Section 6.7.3 for a discussion of the use of the SSO web server agent.
Regardless of the authentication solution chosen for the Application, Application owners are still required to provide a list of all users authorized to access the Application (as stated in Section 6.7.1) to allow proper operation of the enterprise SSO solution.

It must also be noted that any change to the Application’s authentication process should result in a re-evaluation of the Application’s security posture by the System Security Approval Authority (SSAA).

6 Application Interactions with SSO/AD
6 Authorizing User’s Access to the Application

Application owners will maintain full, positive control for access to their web Applications through the Portal.

As has been stated above, authorized access to resources will be based on the membership of security Groups defined in Active Directory. During the Pilot, each Application owner must supply TFWeb administrators with a complete comma separated variable (CSV) list containing the appropriate fields listed in below table.

	First Name
	MI
	Last Name
	Rank
	E-mail address

	James
	B
	Garcia
	LT
	Garciaj@spawar.navy.mil

	Robert
	
	Watley
	CAPT
	co@neversail.navy.mil

	Stacie
	P
	Cardigan
	CIV
	cardigan_stacie@clf.navy.mil

The user’s e-mail address is mandatory, as it is used to locate the user in the TFWeb Active Directory. Middle initial and rank are optional fields used human interpretation of the file. If that data is unavailable, they may be left blank, but both columns should still exist.

TFWeb administrators will apply this file to a utility for automatically creating the Application Access Group in the Active Directory. This utility performs the following actions to create the Active Directory group:

1. The utility searches the Active Directory using the e-mail address column, since this is a unique identifier.

2. As users are located, they are added to the Application Access Group being created.

3. If more than 5,000 users are in the Application Access Group, the utility will create multiple nested Active Directory groups, and one main master group that effectively contains all of the users.

4. Proper error handling techniques will be developed to manage the creation of groups. Entries which result in an error (e.g., a user account cannot be found, an e-mail address is missing) will be output as an error file that will be delivered back to the Application owner for resolution through the AMCS interface process.

Once the directory administrator has created the Active Directory group, the proper entitlements shall be assigned within the SSO product to allow access to the Application.
In the future, a web application will provide Application owners with the capability to add and remove users dynamically from the Active Directory group controlling access to their application.

6 HTTP Headers

SSO works by storing the session token in an HTTP cookie. The browser returns this token as a message header in every request to a server in the same DNS domain as the server that originally issued the cookie. When a SSO web server agent receives the cookie, it will decrypt it using the key it received from the SSO Server. The SSO web server agent then extracts from the token the identity of the user, how the user was authenticated, etc. If the user is allowed to see the content that was requested, then a new token, with an updated last touch time, is returned as a header in the HTTP response. For security reasons, the HTTP cookie specification allows a web server only to manipulate cookies that will be sent back to itself or to other servers in the same domain. This is why traditional SSO does not work between domains. While a cookie set by one server will also be sent to other servers in the same domain, it will not be sent to servers in any other domain.

6 SSO Web Server Agents

As described above in section 6.5.1, the SSO web server agent automates the process of identifying a user who has already authenticated to the SSO. The web server agent could decrypt the session cookie to determine the userID of the individual accessing the Application’s web server, but would require secure communications with the centralized SSO Server to do so. Navy firewalls policies prevent these communications from occurring through firewalls. Therefore, in order for an Application to utilize the SSO web server agent to provide SSO within the Portal architecture, the Application would have to be hosted:

· Within the NMCI network,

· Within the Fleet NOC network,

· On the ship where the Portal resides.

The Application developer would still have the responsibility of programmatically assigning the correct rights to that user based on his or her new flat name space userID, as previously described. SSO provides APIs that give developers programmatic access to the temporary session cookies and the SSO server. Integration of this type gives greater control over the interface with the SSO system, and would expose the fields passed by the encrypted session cookies. If an Application developer chooses to pursue use of the SSO web server agents for SSO integration, the AMTS team will provide details on the SSO APIs.

7 Application/Service Integration

The application integration process will differ depending upon the type of application to be integrated, and the level of integration the application will be achieving. In all cases the goal is to provide the developer a process and supporting infrastructure by which they can develop, test, and certify their application(s) for use in the TFWeb portal environment with a minimum involvement by a core TFWeb team or other external agencies.

This section describes the specific, technical integration issues involved with integrating an application into the Enterprise Portal.

7 Integration Examples

The following subsections will describe some examples of each level of integration. These examples along with the service adaptor components are intended to serve as templates that can be re-used as guides for your application integration to simplify the portal integration effort.

7 Level 1 - seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Hyperlink Integration

Hyperlink integration is the availability of a Hyperlink to the service or application from a page in the TFWeb Portal that transfers the presentation view from the TFWeb Portal to the selected application. A separate browser window will be used to display the application. Applications that are integrated into the TFWeb Portal as Level 1 integration are applications that display static HTML pages. If the service module supplies XML/XSL as a response the portal will render that as HTML when displayed to the user’s browser. The service module HTML will be rendered in a frame on the pane. It is highly desirable that the application presentations conform as much as possible to the “look and feel” requirements as described in Section 3.4.

An example of a service module that implements hyperlink integration is contained in Appendix B. section B.1

The basic flow for a level 1 integration type service module is:

Table 7-1: Basic Flow for Level 1 Integration

	Pseudo Code
	Required/
Recommended/
Optional

	Define a XSL style sheet to be used
	Optional, (required only if using XML data)

	Display a static HTML or XML file with one or more “href” tags in the returned HTML or “hyperlink” tags within the returned XML to the application, can be either a text or icon link
	Required

7 Level 2 - seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Presentation Integration

Presentation integration makes data from a service or application visible through a user interface pane of the TFWeb Portal. For the TFWeb Portal, a pure HTML output from the application adaptor component will be acceptable in the near-term, but the desire is an XML output with its associated schema and XSL (style sheet for HTML translation).

Figure 7.2 demonstrates the flow of data through from the legacy database to the browser

[image: image20.wmf]Application

Data

Web

Application

Portal

Browser

Enterprise

Module Server

HTML Redirect

Proxy

Figure 7‑2 Presentation (Level 2) Process Flow

An example of a service module that implements presentation integration is contained in Appendix B. section B.2

The basic flow for a level two integration type is:

Table 7-3: Basic Flow for Level 2 Integration

	Pseudo Code
	Required/
Recommended/
Optional

	Redirect output of URL to the portal iframe
	Required

7 Level 3 - Application/Data Integration

For service modules that are implementing Application/Data Integration the service module will act as a SOAP client that implements calls to a SOAP server that performs the necessary application functionality. The service module can be written in ASP, JSP, CGI (C++ or Perl)

[image: image21.wmf]

Appl.

Browser

SSO

Server

Enterprise Service

Registry

White

Pages

Green

Pages

Portal

Portal

Connector

SSO

Enterprise Module

Server

Service

Mod

ules

SSO

1

5

7

10

2,3,4

8,9

Each of the numbers in the

diagram are assoicated with

section 7.1.3.x

6

SOAP

Server

Figure 7‑4: Application/Data Integration (Level 3) Process Flow

For a source code example of this see appendix B section B.3.

The basic flow for a level 3 integration type is outlined below, a detailed description of each item follows the pseudo code.

Table 7-5: Basic Flow for Level 3 Integration

	Pseudo Code
	Required/
Recommended/
Optional

	7.1.3.1. Receive HTTP GET or POST with standard HTTP headers
	Required

	7.1.3.2. Process the PRI request message, determine if it is valid and extract information from the PRI request
	Optional

	7.1.3.3. Builds an application specific SOAP Request
	Required

	7.1.3.4. Prompt for username and password for application authentication and authorization.
	Required for applications that are not integrated with the TFWeb SSO and require authentication.

	7.1.3.5. Sends the SOAP Request to the remote Application
	Required

	7.1.3.6. Application processes the Request
	Required, actual work is application dependant

	7.1.3.7. Receives the SOAP Response from the remote Application
	Required

	7.1.3.8. Process application result data
	As required

	7.1.3.9. Builds the PRI Response message
	Optional, Required only for application error condition reporting

	7.1.3.10. Pass XML content back to the Portal
	Required

7 HTTPS GET or POST

The transport protocol for this interface will be Hypertext Transfer Protocol Secure (HTTPS) version 1.1. HTTPS implements secure, encrypted HTTP using the Secure Sockets Layer (SSL) standard. The SSL version 3.0 standard is required with 128 bit encryption and DoD PKI Certificates installed on all servers. All communication will be to the default HTTPS port 443.

The PRI interface supports both the HTTPS “post” and “get” methods. Please refer to the HTTP method definitions at http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.

7 Support for Standard HTTP headers

The interface will support both read and write operations to the standard HTTP headers. Since the portal acts as an intermediary between the client browser and the module server, it must pass through the standard HTTP headers received from the client browser, in its request to the module server. In addition, any module server modifications to the header, such as the setting of browser cookies, must also be passed through the portal to the client browser.

Please refer to W3C RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14) for description of the standard HTTP headers.

7 Process PRI Request

The Portal Request Interface (PRI) will place the XML PRI request in the HTTP header as variable PRIDataRequest containing an XML message. The service module must determine if the PRI request is present and if it is valid. Standard Java classes are available on the Open Source Site
(https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp) to allow for this validation, see appendix B for a description of this class, PRIRequest. If the PRI request is not present in the HTTP header or the PRI request is invalid, the service module must exit with a 403 error.

All communication between the Enterprise Portal and the module server occurs using the Portal Request Interface (PRI) specification. The PRI, as illustrated in Figure 7‑6, is based on open, industry standards – specifically HTTPS and XML. The portal sends an HTTPS request to the URL that corresponds to the service being called. The request is an HTTPS “post” or “get”, with an additional XML message passed as an http header parameter. The XML message contains session channel context information for the request, such as the user identification and delivery channel, that the service may require in order to process the request.

[image: image22.wmf]Portal

Enterprise Module

Server

Portal

Connectors

Service

Modules

PRI

Request

Encode

XML Content

HTTPS Request

HTTPS Response

PRI

Response

Encode

PRI

Response

Decode

PRI

Request

Decode

Figure 7‑6: Portal Request Interface

After processing the request, the service sends a standard HTTPS response back to the portal. The content of this HTTPS response is either HTML, or XML and an XSL style sheet, which the portal will then render and display to the user. Included within the header of the HTTPS response is an XML message that includes some information and instructions that the portal requires in order to render the response.

The PRI interface currently does not provide the capability to dynamically set the timeout value to wait for a response from the module server for each request / reply transaction. The timeout value is currently a static value, configurable by the portal administrator

The following table provides additional detail on the PRI Request.

Table 7‑7: PRI Request Data Definition
	Data Element Name
	Size / Format
	Description
	Notes

	Standard information to be sent as part of the HTTPS request

	Standard HTTP Request Headers
	See section 7.1.3.1.1.
	Standard HTTP headers that the portal received from the client browser.
	HTTP headers are passed in the request from the source to target system reflect the header information received from the client browser via web infrastructure.

	PRIDataRequest data elements sent as a XML message in the HTTP header

	UserID
	200 characters (Alphanumeric)
	The portal user’s identification based on the Navy flat name space schema.
	The portal framework must determine the user ID from either the client browser or the directory service.

	RoleAssignments
	Array of Alphanumeric Strings
	The user’s role assignments.
	The portal framework must determine the user role assignments from the directory service.

	PortalLocation
	80 characters / Alphanumeric
	The location of the portal instance.
	Either “ashore” or “afloat”. For the Pilot, the portal is not required to dynamically determine this value. It may be manually configured within the portal connector template instance.

	Client
	80 characters / Alphanumeric
	The content delivery channel to the client.
	For the Pilot, the only supported delivery channel will be “browser”. The portal is not required to dynamically determine this value. It may be manually configured within the portal connector template instance.

	CheckBandwidth
	10 characters / Alphanumeric
	A flag to inform the service module that communication bandwidth restrictions may exist for this request.
	This value will be either “true” if the service module is required to verify bandwidth availability, or “false”. The portal is not required to dynamically determine this value. It may be manually configured within the portal connector template instance.

	SessionID
	A 32-digit Globally Unique Identifier (GUID) in the format “nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn”.
	A session identifier for the portal user’s browser session.
	The portal dynamically generates and maintains this value. Applications may use this to maintain state.

	ClientStyle
	200 characters / Alphanumeric
	Reference to the Portal stylesheet that corresponds to the users current template
	Allows the application's page to maintain a consistent look and feel with the Portal

7 Build Application SOAP Request

The service module will create the necessary XML that is required by the application SOAP server. This is completely dependant on the services that are available by the application. The XML will be encapsulated within the SOAP request.

7 Prompt for application username and password

If the application is not integrated with the TFWeb SSO product, see section 6.3(TFWeb SSO Architecture), and the application requires users to be authenticated prior to use, the service module must display a userid/password prompt. The user/password entered will be passed to the application in the SOAP request. The service module cannot trust the userid, which is passed as part of the PRI header, is valid. The prompt for a userid/password should loop between the prompt and the SOAP request to the application. If the application fails with an authorization error the script should reprompt the user for the security info. The service module should prompt for the security info 3 times before failing with a security violation.

7 Send SOAP Request to Application

Two types of requests can be made to the application for data.

7 Enterprise Module Server Request

The service module makes the SOAP request to the back end application. By the nature of the request SOAP an XML document will be return in the response.

7 Local Module Server Request

If the request is not going to use SOAP, then the request will be made from a Local Module Server, service module. The request from the Local Module Server is not required to use XML and the request/response mechanism must be defined between the service module and the back end application

7 Application Processes Request

This is not part of the service modules process. The application that a request is made of, as described in Section 7.1.3.3, will have to accept the SOAP request acting as a SOAP server and process the request. The application will return a SOAP response.

7 Receive SOAP Response

The application will encapsulate the response with the SOAP response.

7 Process Application result data

The data returned by the application may need to be reformatted or transformed to some extent by the service module prior to returning to portal. This should be kept to a minimum, as the service module should not contain any business logic. The portal will transform any XML to HTML for display in the browser.

7 Build PRI Response

The service module will create a PRIResponse object, this is optional, it is only required for application error reporting. (see appendix B for description). The PRI Response will be in the HTTP header for processing by the Portal Request Interface (PRI). The following table explains the fields in the PRIDataResponse

Table 7‑8: PRI Response Data Definition
	Data Element Name
	Size / Format
	Description
	Notes

	Standard information to be returned as part of the HTTPS response.

	Standard HTTP/HTTPS Response Headers
	See Section 7.1.3.1.1.
	Standard HTTP response headers from the service module.
	HTTP/HTTPS headers are passed in the response from the service module.

	Standard HTTP Body Content
	Level 1 & 2: XML/XSL (preferred) or HTML

Level 3:

XML/XSL
	The content returned from the service to be rendered by the portal and displayed in the client browser.
	The service module must respond with portal compliant HTML. Please see the TFWeb Portal Service Architecture Design Document for more details concerning portal compliant HTML/XML requirements.

	PRIDataResponse data elements sent as a XML message in the HTTP header (Optional)

	ReturnCode (Optional)
	Numeric (Integer)
	A numeric value optionally returned by the service module to indicate success or failure of the operation.
	The following are valid return code values:

0 – Success

1 – Informational

2 – Warning

3 – Fatal

Please see Section xxx for more information.

	ReturnMessage (Optional)
	Alphanumeric (String)
	An alphanumeric string optionally returned by the service module that provides a textual description of any error condition that may have occurred.
	

	Timeout (Optional)
	Numeric (Integer)
	A numeric value optionally returned by the service module to specify, in seconds, the default request timeout value for subsequent portal to module server requests made by that specific portal connector.
	A numeric integer value, greater than zero. This is a future capability that will not be supported in the Pilot.

7 Application Results Return and Error Handling

Lastly, the service module will return the results from the application request and the PRI Response to the portal. The portal will format this data for rendering within the browser (See Section 3)

7 Error Handling

[image: image23.wmf]Portal

Portal Connector

Browser

Module Server Service

Application

Application Event Logging

200 Successful

return

302 Redirect -

Presentation

Integration

Authorization

Form Generated

for 403 error

PRIDataResponse Return Code>0 Return

Message may be logged, depends on

property file setting

500 severe error

occurred

200 - Display HTML response to the browser

200, 302, 403 or 500 HTTP response,

PRIDataResponse Return Code and Return Message

set, all other http responses should be handled by

service module

HTTP response

Authorization Form Generated for

403 error

Service Registry

Return Code Value

Module Server

IIS

BEA

Module Server

CLearTrust SSO

User Authorization

200, 302, 403 or 500 HTTP response,

PRIDataResponse Return Code and Return Message

set, all other http responses should be handled by

service module

Figure 7‑9: Application Return Response and Error Handling

The above figure will be explained from the application response at the bottom of the diagram up to the browser. Each of the steps along the way has the potential to generate an error and pass the error to the calling program this explanation will follow that path.

7 Application

The application will generate a response based on the HTML or SOAP request. The response will be passed to the Module Server for processing. Any error can be returned to the Module Server Service Module, however, only 200, 302, 403 and 500 messages should passed up the chain from the Module Server Service Module.

7 Service Module

The following table will describe the Service module’s response to the HTTP request from the portal. In general, the service module should trap any errors the application might send it and send informative error messages back in the PRIDataResponse (for logging purposes) and the HTTP message body (for end user viewing).

Table 7-10: Service Module Response

	Field
	Value
	What the setting indicates
	How the Portal Connector interprets the field

	HTTP Response Code
	200 OK

	Successful communication between the Portal and the Module Server.
	Utilize the PRIDataResponse and the HTTP Response Body as described below.

	
	302 Moved Temporarily
	Type 2 (Presentation) integration is in effect.
	Utilize the PRIDataResponse as described below.

Make a new HTTP request to the redirected URL.

	
	Other
	Either the Service Module encountered a serious error and crashed or IIS, BEA, or the SSO component did not allow the Service Module to execute.
	Log the error.

Generate a meaningful message to send back to the end user. (In the case of a 403 error from the SSO component, generate an authorization request form.)

	PRIDataResponse
	Missing from response
	No error occurred
	Take no logging action

	PRIDataResponse Header – ReturnCode
	0 or not defined
	No message. No error occurred
	Take no logging action.

	
	1
	Informational message.
	Log if configured to log informational messages.

	
	2
	Warning message.
	Log if configured to log warning messages.

	
	3
	Fatal Error message.
	Log.

	PRIDataResponse Header – ReturnMessage
	String
	Message to be placed in the log.
	The message that may be written to the log.

	HTTP Response Body
	HTML or XML/XSL Content.
	Content displayed to the end user.
	If content type is text/xml, parse XML for XSL stylesheet reference and use to turn into HTML.

7 SSO

The SSO will be invoked by IIS plug-in to validate user access to the application. If the user is not authorized the return code from the IIS plug-in will generate a HTTP 403 response. The Module Server will not be called if the SSO does not authorize the user. The 403 responses will be passed up to the portal connector.

7 Module Server

The Module Server will invoke the SSO plug-in to authorize the user. If the user is not authorized to use the service the Module Server (IIS) will return a 403 response. All messages from the service are not changed by the Module Server and are passed directly to the Portal Connector.

7 Service Registry

The portal connector accesses the Service Registry via the service registry API to determine the information required to invoke the service module. The integer return code from the service registry API indicates one of three types of conditions:

· Success (0)

· Invalid Key/Service not found (10210)

· Database Error (any value other than success or key not found – maps directly to the SQL Server database error code)

7 Portal Connector

The portal connector calls the service registry to determine the information required to invoke the service. If an error is returned from the service registry the portal connector will log the error in the application event log. Also, the error will be passed back to the portal with in the HTML response to indicate the error message. The HTTP response will be a 200.

The portal connector calls the module server to invoke the service. If an error occurs with that call the error will be logged. Also the portal connector should examine the PRIDataResponse to determine if an error occurred in the module server. If the PRIDataResponse contains an error the error should be logged in the Application Event Log.

If a 403 is returned to the portal connector by the module server the portal connector will generate an HTML response that contains a form for submission to the application owner for to allow access to the application for the user.

7 Application Event Log

The portal connector will log all errors to portal’s logging mechanism

7 Portal

The portal will display the HTML to the user. The error returned from the Portal Connector will be displayed within the pane for the application. If the portal connector returns XML/XSL the portal will process the XML/XSL into HTML for display to the user.

7 Browser

Users browser will render all HTML returned by the portal.

7 Messaging Protocols

A messaging transport is the technology that facilitates peer-to-peer application communication using open standards. The module server will communicate with applications via the following protocols:

Table 7-11: Module Server protocols

	Protocol
	Enterprise Module Server to application
	Local Module Server to application

	HTTPS
	
	Optional

	SOAP
	Required
	Optional

	Other RPC
	
	Optional

Because the communication between the application and the module server must take place over HTTPS an HTTPS server is required on the application server. This can be any server that will allow communication over HTTPS.

7 SOAP

In the scope of the Task Force Web Portal, the term ‘Web Service’ is used to describe a piece of application functionality that is exposed to the Portal environment. To implement a functional, Level-3 integrated Web Service, the Service Developer will need to understand the role of the Simple Object Access Protocol (SOAP) specification. SOAP 1.1 is a lightweight protocol for exchanging structured and typed information between peers in a decentralized, distributed environment. It is an XML based protocol that consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined data types, and a convention for calling and receiving responses from a SOAP server. From the perspective of the Service Developer, the role of SOAP is to serve as the messaging framework between the EMS Service Module and the backend Application entry point. All Level-3 integrated Web Services should execute in a synchronous manner for the pilot. You can think of SOAP as a standard way of packaging up the method calls and their corresponding return values.

7 The SOAP Client

For Level-3 Integration, the EMS Service Module component will represent a SOAP Client. This component will be physically deployed on the Enterprise or Local Module Server and will serve as the broker between the Portal Connector and the back end Application entry point. It is the responsibility of the Service Module component to:

1 Decompose the PRI Request posted by the Portal Connector

2 Build a SOAP Request Message (A packaged Remote Procedure Call)

3 Send the Request Message to the back end Application entry point via HTTPS

4 Receive the SOAP Response (A packaged Result set or Fault)

If the call executed without error, bubble up the returned XML/XSL back to the Portal server. If a SOAP Fault is returned by the backend Application or an HTTP Error occurs, bubble up the error back to the Portal server in the PRI Response structure.

7 The SOAP Server

The backend Application entry point component is a SOAP Server; therefore, it is the responsibility of the SOAP Server component to:

1 Listen and receive SOAP Requests

2 Decompose the SOAP Requests and make the proper handoff (i.e. method call) to a locally implemented business logic component

3 Format the XML/XSL Data to be returned

4 Build and return a SOAP Response Message, including the XML/XSL Data as a return parameter.

7 SOAP Programming Interfaces

The Enterprise Module Server will provide SOAP Programming Interfaces for both the BEA Web Logic and IIS Module Servers. The SOAP Programming Interfaces provide programmatic abstractions that allow developers to build and manage SOAP Messages without having to work directly with the XML Document Object Model. The TFWeb Portal will only support SOAP 1.1 standards. The BEA Web Logic J2EE Application Server provides built in SOAP Services that can be utilized by JSP or Servlet based Service Modules. Example Service Module source code using the BEA Web Logic SOAP Services can be downloaded from the Registry Module Server Developer’s Network on the BEA Level 3 Integration Examples and SOAP Home pages. The Microsoft SOAP Toolkit 2.0 will provide the SOAP Programming Interfaces for ASP-based Service Modules deployed in the IIS Module Server. Example Service Module source code using the SOAP Toolkit 2.0’s interfaces can also be downloaded from the Registry Module Server Developer’s Network on the IIS Level 3 Integration Examples and SOAP Home pages. The Registry Module Server Developer’s Network is located at:

https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp/

7 Service Registry

The Task Force Web Service Registry is the physical directory that stores and manages information and metadata about Web Services. The three major data entities that are managed by the Service Registry are

1 Echelons - The Echelon is the top-level entity and logically maps to the major organizational divisions within the Navy. Contact, Address and general “white page” information is stored at the Echelon level. Each Echelon can own 0-to-many Application entities.

2 Applications - The Application entity falls under the Echelon entity and logically maps to a software application managed by the Echelon. Each Application can own 0-to-many Web Services.

3 Web Services – The Web Service entity falls under the Application and logically maps to a specific piece of functionality provided by the Application. The Service Registry provides extendable storage facilities for Web Service technical metadata through the use of Technical Specifications. Technical Specifications can be registered and instances attached to a Web Service.

7 Session Management

The Module Server does not provide persistent storage space to service modules to maintain state between user connections. This is primarily due to the limitations imposed by the clustered and dynamic load balanced configuration of the Enterprise Module Servers.

The portal provides a SessionID as part of the Portal Request Interface for the application to use for application state management. There are other state management techniques that an application developer may wish to use such as session cookies, and URL parameters.

8 Service Certification Process

8 Process Overview

The TFWeb Service Certification Process is designed to ensure application services meet the security and functional standards of TFWeb and the Government prior to implementation within the production TFWeb Portal.

[image: image24.wmf]Package

Review and

Registration

NMCI Beta

Lab Test

App Service

Promotion to

Production

Submit "Intent to

Migrate" Package

IT-21

SIPRnet Beta

Lab Test

IT-21 NIPRnet

Beta Lab Test

Passed?

Passed

Both IT-21 &

NMCI?

Network

Class.?

WEN IT

Governance

Approval

Yes

No

NIPRnet

No

Remediate

Remediate

Yes

No

Start

SIPRnet

Yes

Figure 8‑1 Service Certification Process.

The certification process commences when the Service Owner delivers the Intent to Migrate Package to its Application Migration Customer Support (AMCS) point of contact (POC). The AMCS Team will review the Intent to Migrate Package for completeness and assists in assembling the required information for approval of the final Request to Migrate by the AMCS.

The TFWeb Beta Test Team will then perform Beta Testing within the IT-21 SIPRNET Lab for SIPRNET services and both the IT-21 NIPRNET and NMCI Beta Lab environments for NIPRNET services. The Test Team will communicate any issues encountered during testing to the Service Owner and the AMCS POC.

8 Information Assurance Certification and Accreditation

It is the Service Owner responsibility to obtain an Approval to Operation (ATO) or Interim Approval to Operation (IATO) for an application prior to registering it for migration to the TFWeb Portal. Please see the Information System Security Manager (ISSM) representative for your command for more information.

8 Service Intent to Migrate, Rationalization, and Registration

The Service Registration Package will consist of a submission to the application information database managed by AMCS and an IATO/ATO if one currently exists. The package will be reviewed by a member of AMCS using the guidelines in section 11.2 of this guide to determine the requirements for the final Service Registration package.

The Service Registration Package should be submitted by an authorized representative of the Echelon II command to the appropriate AMCS POC via email and should address the issues listed below. Portions of existing documents may be submitted as part of the memo to prevent unnecessary duplication of effort. However, the submission should be organized to provide the following information. Guidance is provided in section 11.3 on the Service Registration Package review process

· Interim Authority to Operate (IATO) or Authority to Operate (ATO) from the appropriate Designated Approval Authority (DAA) for the software developer.

· NMCI Request for Service (RFS) form for NIPRNET applications

· Migration plan to level 3 integration with appropriate milestones (separate document)

· Waiver for level 1 integration included (if applicable)

· Registry Metadata

· Module Server package

· Access control list (See Section 6.7.1)

· Test plan and cases

· Temporary login with access to non-administrator portions of the application - if a level 1 or 2 application

· Summary of previous testing accomplished

· Configuration of local application servers or remote module servers and estimated concurrent users of service

· Documentation of application data structures and data interfaces

· Migration plan - if application/data overlap has been identified

· Migration plan - if XML not in compliance with Navy standards is in use

In some cases a single application will be comprised of multiple individual services, each with its own service module. If an application has multiple service modules then the service owner should submit a separate test plan and RFS (if applicable) as part of the migration package.

Some services may also have multiple distributed physical instances. This typically requires each service instance to have a unique URL as well as a separate ACL. In this situation the service owner should submit a separate service module and ACL for each physical instance of the service with the migration package.

All contents of the Service Registration Package should be placed in a Zip file and forwarded to the AMCS POC via email.
8 Registry Metadata

The Service Owner should include the following information for integration into the portal registry.

· Description of portal service to be integrated

· The URL of the service to be integrated

· The Owner of the service to be integrated (lead development organization)

· The taxonomy category under which the service will be listed (see Section 5)

· Point(s) of contact information for user access. This information should include names, phone numbers, email addresses

· Any parameter information required by the service

· Target User Community (role/platform/location)

· Service versioning information

8 Module Server Package

The Service Owner will need to put together a module server package that includes all resources that the service will require for being included in the Enterprise Module Server. The module server package contents will vary depending on the level of integration required by the service.

These module server resources can include any of the following types of items: HTML pages, icons and images, XML files, XSL templates, JSP pages, Java Servlets, EJBs, ASP pages, COM/COM+ components.

The following file formats are acceptable for the module server packages:

· Java developers should deliver their module server package in WAR/EAR format. WAR/EAR files are an executable file archive format used to package deployment files for a Java enabled application server.

· ASP developers should deliver their module server package in CAB format. The CAB format is a file archive pattern used to package deployment files in the Microsoft Information Server environment.

8 TFWeb Beta Test Processes

TFWeb Beta Lab testing ensures that application services function appropriately within the portal environment and that they adhere to the TFWeb standards outlined in the Integration Developers Guide. There are three TFWeb Beta Test Labs, an IT-21 SIPRNET lab, an IT-21 NIPRNET lab, and an NMCI NIPRNET lab. All application services functioning across the SIPRNET will be tested in the IT-21 SIPRNET Lab. Services functioning across NIPRNET will be tested in the IT-21 NIPRNET Lab as well as the NMCI Beta Lab.

8 IT-21 NIPRNET Beta Lab Process

The AMCS POC will submit SIPRNET services packages the IT-21 SIPRNET Beta Lab. As packages are submitted for testing the following process is followed:

1. The AMCS POC submits a service package to Beta Lab POC via email. The package must include the following items required by the Beta Lab for testing:

· Registry Meta-data

· Module Server package

· Test plan and test cases

· Description of any special application functionality that will be required and/or tested
2. The Beta Test Team reviews the service package for completeness. If the package is complete, the service is scheduled for testing and notification is sent to the service owner and the AMCS POC. If the package is incomplete notification is sent requesting the missing components before scheduling the service for testing.

3. The Beta Test Team creates the global unique identifier (GUID) key for the service, installs the service module, creates the Registry entries, and creates the portal connector for the service.

4. The Beta Test Team performs the tests.

5. If the application fails any test cases or if its performance impacts that of the Portal environment the application will not pass the Beta Test. In this case the Service Owner and the AMCS POC are notified with specific reasons for failure. AMCS may request support from AMTS to remediate any technical issues preventing approval.
6. Once the service has passed testing, the service will progress to the WEN IT Governance. Upon approval from WEN IT Governance the service is promoted to production.

[image: image25.wmf]Receive

Registration

Package

Schedule Beta

Test

Perform TFWeb

Beta Test

Passed

Install and

Configure

Service

Generate

Acceptance

Letter

Generate Non-

Acceptance

Letter

Yes

No

Start

Figure 8‑2 TFWeb IT-21 SIPRNET Beta Test Process

8 IT-21 NIPRNET Beta Lab Process

The AMCS POC will submit NIPRNET services packages to both the NMCI Beta Lab and the IT-21 NIPRNET Beta Lab. The labs coordinate so that each service package is tested in only one lab at a time. This helps balance the load between the labs and ensures that any issues encountered during testing are addressed by one lab thus minimizing delays in the other lab. As packages are submitted for testing the following process is followed:

1. The AMCS POC submits a service package to Beta Lab POC via email. The package must include the following items required by the Beta Lab for testing:

· Registry Meta-data

· Module Server package

· Access control list
· Test plan and test cases

· Request for Service (RFS) form

· Description of any special application functionality that will be required and/or tested
2. The Beta Test Team reviews the service package for completeness. If the package is complete, the service is scheduled for testing and notification is sent to the service owner and the AMCS POC. If the package is incomplete notification is sent requesting the missing components before scheduling the service for testing.

3. The Beta Test Team creates the global unique identifier (GUID) key for the service, installs the service module, creates the Registry entries, and creates the portal connector for the service.

4. The Beta Test Team performs the tests.

5. If the application fails any test case or if its performance impacts that of the Portal environment the application will not pass the Beta Test. In this case the Service Owner and the AMCS POC are notified with specific reasons for failure. AMCS may request support from AMTS to remediate any technical issues preventing approval.
6. The IT-21 Beta Lab collaborates closely on testing NIPRNET services with the NMCI Beta Lab. If the service has passed testing in the IT-21 NIPRNET Beta Lab it is then forwarded to the NMCI Beta Lab to complete the TFWeb certification process.
7. When the service passes the Beta Test in both the IT-21 and NMCI Beta Labs a notification letter will be sent to the Service Owner and the AMCS POC.

8. Once the service has passed testing, the service will progress to the WEN IT Governance. Upon approval from WEN IT Governance the service is promoted to production.

[image: image26.wmf]Receive

Registration

Package

Schedule Beta

Test

Perform TFWeb

Beta Test

Passed

Completed

NMCI Beta

Testing

Install and

Configure

Service

Generate

Acceptance

Letter

Generate Issue

Report

Forward

Application

Service Package

to NMCI Beta Lab

Yes

No

Yes

No

Start

Figure 8‑3 IT-21 NIPRNET Beta Test Process

8 NMCI Beta Test Process

The AMCS POC will submit NIPRNET services packages to both the NMCI Beta Lab and the IT-21 NIPRNET Beta Lab. The labs coordinate tests so that each service package is tested in only one lab at a time. This helps balance the load between the labs and ensures that any issues encountered during testing are addressed by one lab thus minimizing delays in the other lab. As packages are submitted for testing the following process is followed:

1. The AMCS POC submits a service package to Beta Lab POC via email. The package will include the following items required by the Beta Lab for testing:

· Registry Meta-data

· Module Server package

· Access control list
· Test plan and test cases

· Request for Service (RFS) form

· Description of any special application functionality that will be required and/or tested
2. The Beta Test Team reviews the service package for completeness. If the package is complete, the service is scheduled for testing and notification is sent to the service owner and the AMCS POC. If the package is incomplete notification is sent requesting the missing components before scheduling the service for testing.

3. If a service requires the modification of the desktop configuration (i.e. plug-ins, active-X controls, etc.) then NMCI requires that desktop application go through an additional process in order to certify the security of the mobile code. NMCI also requires that the mobile code be tested on the standard NMCI desktop to ensure that it does not impact other standard desktop application. The latter process (NMCI Application Certification Process) is outlined in the following section.

4. The Beta Test Team creates the global unique identifier (GUID) key for the service, installs the service module, creates the Registry entries, and creates the portal connector for the service.

5. The Beta Test Team performs the tests.

6. If the application fails any test cases or if its performance impacts that of the Portal environment the application will not pass the Beta Test. In this case the Service Owner and the AMCS POC are notified with specific reasons for failure. AMCS may request support from AMTS to remediate any technical issues preventing approval.
7. A security (Green Team) scan is performed to ensure that the service module meets information assurance (IA) criteria.
8. The NMCI Beta Lab collaborates closely on testing NIPRNET services with the IT-21 NIPRNET Beta Lab. Services are not tested simultaneously in both labs. If the service has passed testing in the NMCI Beta Lab, but has not been tested in the IT-21 NIPRNET Beta Lab it is then forwarded to that lab to complete the TFWeb certification process.
9. When the service passes the Beta Test (both the IT-21 and NMCI Beta Labs for NIPRNET services) a notification letter will be sent to the Service Owner and the AMCS POC.

10. Once the service has passed testing, the service will progress to the WEN IT Governance. Upon approval from WEN IT Governance the service is promoted to production.

[image: image27.wmf]Receive

Registration

Package

Schedule Beta

Test

Perform TFWeb

Beta Test

Passed

Completed

IT-21 NIPRNET

Beta Testing

Install and

Configure

Service

Generate

Acceptance

Letter

Work with

Service Owner to

Remediate

Forward

Application

Service Package

to ISF Beta Lab

Yes

No

Yes

No

Start

Service

Requires

Mobile

Code?

NMCI

Legacy

Application

Certification

Process

Yes

No

IA Green Team

(Security) Scan

Passed?

Yes

No

Figure 8‑4 NMCI Beta Test Process

8 NMCI Application (Mobile Code) Certification Process

The NMCI Application Certification Team will be responsible for processing all desktop applications (e.g. mobile code) through a two-phase testing cycle. Phase 1 consists of basic application functionality testing, and Phase 2 consists of standard seat service integrity testing. Any special or additional test requirements must be identified by the Navy claimants prior to the beginning of testing, and preferably in the NMCI RFS.
The certification criteria currently required for Phase 1 testing include:

· Basic functionality:

· Launch the application

· Create or Open a new document or file

· Save a new document or file

· Print a new document or file

· Close the application

· Execute “best business practice” or “customer-defined” testing scripts applicable to the application.

[image: image28.wmf]Phase I Test

Level 1

Level 2

Install

Application

Update

Packaging

Phase I Test

TART

Review

Level 2

Test

Publish

Application

Pass

Fail

Standard

Seat

Servvice

(Gold Disk)

Initial

Packaging

Certification

Test

Site Solution

Engineering /

Re-engineering

Fail

Fail

Generate

Report of

Certification

Onsite

Connectivity

Test

Pass

Start

Fail

Pass

Figure 8‑5 NMCI Application Certification (Mobile Code) Process
Any additional functionality testing needs to be defined and scripted by the Service Owner to ensure proper execution. Once the lab receives an application, the Service Owner can track the status by viewing the report posted online at http://www.eds.com/nmci/transition.htm.
8 WEN IT Governance

Programs that do not meet all requirements for migration may rarely be allowed to proceed through the testing process while simultaneously completing these requirements. In addition, applications that fail portions of the testing may be functionally displaced by another application by the time they are ready for migration to the production portal. Testing may also demonstrate substantial overlap with another application or organizational issues that prevent immediate migration of the application. Final approval of migration is currently a function of the Task Force Web Executive Steering Group. This approval may be delegated to a lower level based on application compliance with TFWeb standards.

9 Coding Standards, Policies and Guidelines

In order to maintain a large organization of applications and services, certain code based naming conventions need to be applied. This guide is presented as a straightforward suggestion that will streamline potential conflicts within each service and application. This is only meant to be a guideline where there are no guidelines present. Where there are current guidelines, those should take precedence over any procedures in this guide. Many of these suggestions have been adapted as the “industry standard” or “best of breed” and are well known within the IT industry.

Questions and suggestions should be referred to the Open Source Site at https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp/
9 Directory Structure and Variable Naming Conventions

While the directory structure for a service module is highly subjective to the internal plans of the particular development shop, it was felt necessary to provide some guidelines on directory structure and variable management. Below is a suggested outline for application directories. In the next section variable management will be discussed. This should not supersede any internal mandate already in place.

The use of this outline is suggested and voluntary. This section was written to aid in the development process for the service application provider

9 Assumptions

· The web administrator or web master has provided space for the web site on the web server

· All virtual directories have been created and configured by the web master or web administrator on the web server

· The user has sufficient rights to add, edit and delete files and directories in the target environment

· A saved backup incase a restore is required

· A clear idea of the functionality that is to be represented by the web site

· Source code control procedures or applications are being used

· All URL references should use relative URL instead or exact URL references.

9 Directory Structure for Storing Services in the Enterprise Module Server

The TFWeb Enterprise Module Server (EMS) provides support for Service Modules developed in J2EE, ASP or CGI, where CGI refers to Windows-compliant C++ or Perl. The location on the EMS file system where the Service Module is stored is based on the Service Module type (ASP, JSP or CGI). The location and type of Service Module also affects the URL that the portal connector uses to address the Service Module.

The following sub-sections outline where on the EMS file system to install each type of service module.

9 J2EE Service Modules

BEA WebLogic Server (WLS) 6.1 is the execution engine for J2EE Service Modules. J2EE Service Modules are deployed in BEA WLS as Web Applications or Enterprise Applications, with the distinction between each being the type and number of J2EE components being deployed.

9 J2EE Web Applications

A J2EE Web Application contains the following types of resources:

· Servlets

· Java Server Pages (JSP)

· JSP Tag Libraries

· Static HTML pages and images

Although limited to containing only these types of resources, a Web Application is still able to access all services and APIs available in WLS, including EJB components, JDBC database connections and Java Messaging Service (JMS) resources.

Web Applications components are packaged in a Web Archive (WAR) file, which is a Java Archive (JAR) file, with a .war extension. WAR files bundle all component files in a directory into a single file, maintaining the directory structure. WAR files also include XML descriptors that instruct WLS how to deploy the components.

The J2EE Web Application WAR file must packaged in compliance with J2EE standards, as described at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html, and must follow the naming standards defined in Section 9.1.2.1.5.

9 J2EE Enterprise Applications

An Enterprise Application may contain a larger set of components, including:

· Web Applications (one or more)

· Enterprise Java Bean (EJB) components

· Connector components – resource adapters

A J2EE Enterprise Application, consisting of assembled Web application(s), EJB components, and resource adapters, is packaged as an Enterprise Application Archive (EAR) file, which is a JAR file with an .ear extension. Web Applications are packaged in a WAR file. Enterprise Java Beans are packaged in JAR files with .jar extensions. Resource adapters are packaged in a JAR file with a .rar extension. An .EAR file contains all of the .jar, .war, and .rar component archive files for an application and an XML descriptor that describes the bundled components.

Each Web Application contained within a J2EE Enterprise Application file corresponds to a service module, must be assigned a service key, and must comply with all J2EE Web Application requirements identified in Section 1.3.1.1.

The J2EE Enterprise Application EAR file must packaged in compliance with J2EE standards, as described at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Overview4.html, and must follow the naming standards defined in Section 9.1.2.1.5.

9 J2EE Addressing Standards

J2EE service modules are addressed in the following manner:

https://<ems-hostname>/servlets/<service-key>/<entry-point>.<ext>

Where:

· <ems-hostname> is the fully qualified domain name of the EMS server

· <service-key> is the 32-character Globally Unique Identified (GUID) assigned to the service when it is registered in the Service Registry

· <entry-point> is the filename that corresponds to the entry point to the service

· <ext> is the appropriate extension of the service module entry point

The following is an example based on the above:

https://services.homeport.navy.mil/servlets/ACC7A3AB-B29C-47FE-A300-D7DE965FC530/myService.jsp
9 J2EE Directory Standards

J2EE Service Modules are stored within the EMS as BEA WLS applications. BEA WLS applications must be stored in the following directory:

<BEA-Product-Directory>\config\<BEA-Domain>\applications
Where:

· <BEA-Product-Directory> is the directory identified during installation where BEA product files will be installed (i.e. e:\bea\wlserver6.1)

· <BEA-Domain> is the BEA domain name identified during installation (i.e. EMSDomain)

[image: image29.wmf]Controlled by TFWeb Policy

Controlled by Service Developer/Owner

(but must comply with J2EE WAR/EAR standards)

WLS

Applications

WEB-INF

Images,

Subfolders,

etc.

Main.jsp

Service

Key.war

(ex: EBA6BD34-3CA3-4F5D-B9EC-

D6855AF54618.war)

e:\bea\wlserver6.1\config\EMSDomain\

applications

Figure 9‑1J2EE Directory Structure

9 J2EE Naming Standards

J2EE Service Modules are stored on the EMS as either Web Archive (WAR) or Enterprise Application Archive (EAR) files. The filename for the service must follow the following convention:

<service-key>.<ext>

Where:

· <service-key> is the 32-character Globally Unique Identifier (GUID) assigned to the service when it is registered in the Service Registry

· <ext> is the appropriate file extension of the application archive (i.e. .war or .ear)

The following is an example:

ACC7A3AB-B29C-47FE-A300-D7DE965FC530.war

In the case of EAR files, which may contain more than one Web Application, each Web Application stored within the EAR must be assigned (and named after) a unique service key. The EAR file will be named using the service key of the primary Web Application stored within the EAR.

For example:

ACC7A3AB-B29C-47FE-A300-D7DE965FC530.ear
9 ASP Service Modules

Microsoft IIS is the execution engine for Active Server Pages (ASP) Service Modules. Microsoft ASP is a server-side scripting language that allows for the creation of dynamic Web content. An ASP Service Module may also contain static HTML pages and images.

ASP Service Modules are delivered to TFWeb in Microsoft CAB archive format. The service modules are then un-archived and stored on the EMS server in exploded directory format in order to be accessed.

9 ASP Addressing Standards

ASP Service Modules are addressed in the following manner:

https://<ems-hostname>/<service-key>/<entry-point>.asp
Where:

· <ems-hostname> is the fully qualified domain name of the EMS server

· <service-key> is the 32-character Globally Unique Identified (GUID) assigned to the service when it is registered in the Service Registry

· <entry-point> is the filename that corresponds to the entry point to the service

The following is an example of an ASP URL:

https://services.homeport.navy.mil/ACC7A3AB-B29C-47FE-A300-D7DE965FC530/myService.asp
9 ASP Directory Standards

ASP Service Modules are stored within the EMS as Microsoft IIS applications, which require that a new virtual directory be created for each Service Module. ASP services are stored under the IIS standard inetpub directory, in a sub-directory that corresponds to the assigned service key.

<wwwroot>\<service-key>
where:

· <wwwroot> is the default IIS directory for storing web applications (e.g. e:\inetpub\wwwroot)

· <service-key> is the 128- bit Globally Unique Identified (GUID) assigned to the service when it is registered in the Service Registry

An example would be:

E:\inetpub\wwwroot\ACC7A3AB-B29C-47FE-A300-D7DE965FC530
After installing the service module, a new virtual directory must be configured that corresponds to that directory. Virtual directories are created via Wizard from the Microsoft Internet Services Manager tool. The service key should be used as the alias for the new virtual directory. Virtual directories created for ASP service modules will require “Read” and “Run scripts” security permissions (configured during virtual directory creation).

[image: image30.wmf]GUID - 128 bit

key, 16 bytes

wwwroot

Service Key

Controlled by TFWeb Policy

Controlled by Service Developer/Owner

MAIN.ASP

GUID - 128 bit

key, 16 bytes

IMAGES,

SubFolders,

ETC.

(ex: e:\inetpub\wwwroot)

(ex: EBA6BD34-3CA3-4F5D-B9EC-

D6855AF54618)

Figure 9‑2ASP Directory Standards

9 ASP Naming Standards

Naming standards for ASP Service Module content stored under the service key directory is at the discretion of the service developer/owner, with the following exceptions:

· Files containing ASP scripts shall end in the extension .asp.

· Files containing HTML content shall end is the extension .html or .htm

· Files containing XSL content shall end in .xsl

The use of common naming standards is recommended as best practice for Web development, but is not provided as policy within this document.

9 Static HTML Service Modules

The EMS can also support Service Modules that contain only static HTML pages and associated images content, in particular for Level 1 (Hyperlink) Integration Service Modules. Static HTML Service Modules shall be stored and addressed using Microsoft IIS in the same manner as ASP Service Modules, with one exception – virtual directories created for static HTML Service Modules will require only “Read” security permissions (configured during virtual directory creation).

The following is a sample URL to access a static HTML service module:

https://services.homeport.navy.mil/ACC7A3AB-B29C-47FE-A300-D7DE965FC530/myService.html
9 CGI Service Modules

CGI Service Modules consist of either Perl or Windows-compliant C/C++. ActiveState ActivePerl 5.1.6 is the execution engine for Service Modules developed using Perl. C/C++ is not an interpreted language, and hence does not require an execution engine. It is executed natively by the Windows operating system.

9 CGI Addressing Standards

CGI Service Modules are addressed in the following manner:

https://<ems-hostname>/<service-key>/<entry-point>.<ext>
Where:

· <ems-hostname> is the fully qualified domain name of the EMS server

· <service-key> is the 32-character Globally Unique Identified (GUID) assigned to the service when it is registered in the Service Registry

· <entry-point> is the filename that corresponds to the entry point to the service

· <ext> is the appropriate extension for the service module type (i.e. .pl for Perl and .exe for C/C++)

The following is an example of a CGI URL:

https://services.homeport.navy.mil/ACC7A3AB-B29C-47FE-A300-D7DE965FC530/myService.pl
9 CGI Directory Standards

CGI Service Modules are stored within the EMS as Microsoft IIS applications, which require that a new virtual directory be created for each Service Module. CGI services are stored under the IIS standard wwwroot directory, in a sub-directory that corresponds to the assigned service key.

<wwwroot>/<service-key>
Where:

· <wwwroot> is the default IIS directory for storing web applications (e.g. e:\inetpub\wwwroot)

· <service-key> is the 32 character Globally Unique Identified (GUID) assigned to the service when it is registered in the Service Registry

An example would be:

e:\inetpub\wwwroot\ACC7A3AB-B29C-47FE-A300-D7DE965FC530
After installing the service module, a new virtual directory must be configured that corresponds to that directory. Virtual directories are created via Wizard from the Microsoft Internet Services Manager tool. The service key should be used as the alias for the new virtual directory. Virtual directories created for ASP service modules will require “Read”, “Run scripts” and “Execute” security permissions (configured during virtual directory creation).

9 CGI Naming Standards

Naming standards for CGI Service Module content stored under the service key directory is at the discretion of the service developer/owner, with the following exceptions:

· Files containing Perl scripts shall end in the extension .pl

· Files containing Windows-compliant C++ code must be compiled and end in the extension .exe

· Files containing HTML content shall end is the extension .html or .htm

· Files containing XSL content shall end in .xsl

The use of common naming standards is recommended as best practice for Web development, but is not provided as policy within this document.

9 Filename Standards

General filename standards should also be present when developing web sites. Each file should tell a little bit about what the file should do. This helps developers to organize code in a way that is logical and somewhat organized. As always the shop rules apply to filename naming conventions before applying any outside rules.

Each file should be saved in its appropriate directory, with the appropriate extension, in order to promote organization and reuse.

9 Variable Management

Variable management is also another aspect of web site planning that is highly subjective to each shop. If the current shop has already published guidelines for variable management, all parts of this discussion that comply with the policy should be followed, noncompliant directions should not be followed. This discussion is for service developer’s information and should be taken into account when using client side variables.

Each service module is created within its own virtual directory, therefore, each service module will run within its own address space and there will be no collisions between applications for variable names. Also, because each service module will be running within its own address space the use of global.asa with ASPs is allowed.

By complying with the broad guidelines below, “variable collision” could be held to a minimum. “Variable collision” can be defined as two variables with the same name that have different functionality within applications. The collision occurs when the variable is called and the desired functionality does not occur, other functionality has rendered the variable inconsistent with the desired results. This behavior can occur when using cookies, JavaScript or other client side validation techniques.

9 General Naming Conventions for Variables

In general naming conventions should be meaningful to the web site developer and should describe the functionality of that specific variable. As with any programming language, any variables should be named to express function or purpose. Care should also be taken to not use reserve words as variables because there could be unexpected results. When appropriate the developer should comment the application to aid with maintenance issues.

Comments help to explain why and how this part of the code works. This allows for more detailed documentation right where the developer needs it, in the code. There are many different ways to comment code a standard should be defined and followed throughout the coding effort. Check with the particular programming language to detail how to comment functionality within the code.

9 Local Variables

Local variables are variables that reside inside a function or procedure. These variables should not have subsequent pages rely on the values, as they will disappear on any subsequent page. Nonetheless, local variable naming should also express function or purpose. When necessary, it is always a good idea to type cast and declare variables (dim persarray(9) as array, declare persarray[] as array).

The following are examples of good variable names.

· personcount – counter to increment number of people logged in.

· lname
- last name

· fname – first name

· rank – rank

Some examples of inefficient variable names:

· X

· Y

· Ddrfvdse -unless it makes sense

· Yadayadayada – not descriptive enough

9 Global Variables

Global variables should be avoided if possible. If a global variable is used, make sure the variable is prefaced with some indicator that it is globally unique. A good naming standard is one that is planned in advance. This will also aid in the “non-collisionary” variable path that each web site seeks to encounter. Once a global variable is not used, destroy it so as not to encumber other application specific functions.

The following are some examples of global variables:

· gblUserID – the gbl designates that the UserID is global

· gv_Role – gv_ designates that the Role is a global variable

· globalRank – global designates the scope of the variable

Some poorly defined global variables:

· Out – could be confused with other functions like print.out

· In – could be confused with other functions like input()

· Count – reserved word

· Id- could be confused with any other id that may be used

9 Cookies

9 Temporary Client Side Cookies

Temporary cookies are allowed. These are cookies that are removed from the browser when the web application ends. These cookies can maintain temporary pieces of information that are needed during the execution of the service module or backend application.

9 Permanent Client Side Cookies

The use of permanent client side cookies should be restricted as these cookies can always be tracked back to users or user computers. DoN CIO has found that cookies are in violation of a federal policy that prohibits the use of Internet technology that collects identifying information on individuals who access its web sites. That policy prohibits the use of web technology to collect identifying information to build profiles on individuals, and prohibits the use of persistent cookies unless certain conditions are met, including obtaining the personal approval of the head of the agency.

If a cookie must be used, use the GUID number. This a unique number for each web site on the NMCI web portal. This unique naming convention will almost guarantee that cookies are not over written.

9 Server Side Session Variables

Server side session variables should use the same naming convention as all other variables. As always the shop conventions should be adhered to before changing any parts of the code. Session side variables should be used sparingly as they take up memory on the server and could potentially cause lags in service.

In order to save some of the processing power, be sure to destroy all unused session variables at the time the session variable is no longer used.

9 Standard Error Handling

See section 7.2 for an explanation of the error trapping.

9 JSP, CGI and ASP Standards

Refer to the following web sites for the most up to date information regarding standards for the various development languages.

All languages TFWeb Open Source Site:

https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp/
ASP: http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000522
CGI: http://msdn.microsoft.com/
Cleartrust: http://www.rsasecurity.com/products/cleartrust/index.html
BEA Documentation can be found at the following web site: http://e-docs.bea.com/wls/docs61/index.html. Documents from the BEA site that are will help with the development and deployment of services on BEA site are:

· Programming WebLogic Enterprise JavaBeans at: http://e-docs.bea.com/wls/docs61/ejb/index.html
· Programming WebLogic JSP at: http://e-docs.bea.com/wls/docs61/jsp/index.html
· Assembling and Configuring Web Applications at: http://e-docs.bea.com/wls/docs61/webapp/index.html
IIS reference at web site: http://www.microsoft.com/
CleverPath (formerly Jasmine): http://ca.com/products/jasmine/app_server.htm
Java Coding standards please follow the standards listed at web site:

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
JSP: http://java.sun.com/products/jsp/
TFWeb Architecture Version 1.1.doc http://www.tfw.navy.mil/ under public library.

9 Environment Cleanup

Environment cleanup refers to cleaning up variables, record sets, objects, connections, and streams after you are done with them. As each object is no longer being used, it is a good idea to destroy these objects to save memory leaks and to have the application perform at an optimum level. Do not rely on the garbage collector to clean up the environment. It is up to each developer to make sure that his or her environment is optimal.

10 Development Tools and Resources

10 Development Tools

For the purposes of Task Force Web (TFWeb), development tools are not part of the infrastructure; however, it is recommended that developer tools integrate well with the products listed below. When appropriate a development tools is listed, these tools are not the only tools that would work they are simply a list of the tools that are known to work with the components of TFWeb

· Interactive Development Environment (IDE)

· BEA - J2EE - JSP

· IBM Visual Age for Java

· Borland Jbuilder

· IIS - ASP

· MS Visual Studio Visual InterDev

· XML Parser – XALAN Java version 2.2.D11

· BEA – XERES

· IIS – MS 4XML Services

· SOAP 1.1 Specification

· Microsoft SOAP Toolkit 2.0

· BEA WebLogic 6.1 SOAP Services

As stated above, the purpose of this document is to provide guidance to service providers to enable easy integration of their applications into the Enterprise Portal infrastructure. This guidance does not presume to specifically dictate a set of utilities that developers must use to develop applications.

However, there are a number of incompatibilities that many developers may encounter when using a certain toolset, which may preclude its use in the TFWeb portal environment. As such, the main Task Force Web portal site will provide a collaborative knowledge area devoted to the developer virtual interest group. This knowledge area will have the following sections:

· Preferred “Not to Use” Product List: This area will be devoted to identifying the products that have been found to be incompatible with the TFWeb portal infrastructure.

· Discussion areas, by product, in which various developers (and possibly their vendors) can discuss experiences with the toolsets. In this manner, developers and content providers can share their experiences/solutions gleaned from developing

Refer to appendix D for a complete list of the supported versions for each technology used by TFWeb.

10 Testing Tools

10 Portal Connector Stub (PCS)

The documentation for the portal connector stub is contain on the Open Source Site:

https://tfw-opensource.spawar.navy.mil/servlet/portal/
Select “Developers Resources” from the portal menu (upper left), and then select from the documentation pane the PCS_Vxx-Design.doc.

11 Application Owner/Analyst Guidance

The process for migrating an existing application into the Navy portal is designed to ensure that the target application meets all portal standards, security requirements, does not utilize a data environment duplicative of an existing authoritative data source, and does not provide a duplicative service.

The process begins with the service provider determining the applicability of migrating the application to the Navy portal. Next, a review of existing services and data sources is conducted to identify various duplication issues. Once the decision is made to migrate the application to the Navy portal, the developer submits an Intent to Migrate notification to the TFWeb Application Migration Customer Support (AMCS) team. An AMCS officer will be assigned to the application who will assess the application, help to identify overlapping applications and data sources, and assist in compiling the Request to Migrate for submission to the Task Force Web AMCS team. After review, the AMCS team will forward applicable portions to the beta test labs for final technical review prior to integration. This chapter will discuss the AMCS processes and the specific steps required to complete each.

11 Pre-Service Registration Phase

Before starting the TFWeb integration process, the developer must answer for themselves a number of questions:

· What is my TFWeb integration goal (see Section 11.1.1)?

· What is my virtual interest group (see Section 11.1.1.1)?

· Is there an approved DoN/DoD application or service already in existence that provides this service/content (see Section 11.1.2)?

· How do I find other registered services on the Enterprise Portal (see Section 11.1.2.1)?

· How is “best of breed” determined (see Section 11.1.2.2)?

· Is my application/service already web-enabled (see Section 11.1.4)?

· If so, now what (see Section 11.1.4.1)?

· If not, should I web-enable it (see Section 11.1.4.2)?

Once these factors have been determined, the program, application, or content manager will have the data needed to determine what migration plan/POA&M will be required to achieve their targeted level of integration.

11 Determining TFWeb Integration Goals

What is a “web-enabled” application? This term is often misunderstood. A “web-enabled” application is simply an application or service that is accessed within the context of a browser and is based on Internet communications standards. This includes, but is not limited to, applications/technologies such as Java (beans, applications, scripts, applets (signed), server pages), Active Server Pages (ASPs), ActiveX components (signed), multimedia, and other approved plug-ins.

Regardless of your current web posture, there are certain key things that a developer, program, application, or content manager must determine before considering integration into the Navy Enterprise Portal:

· Defining Communities of Interest.

· Market review of existing services and content.

· Supportability and Maintainability.

11 Determining Communities of Interest

A key objective of web-enablement is the cross-pollination of data within and across communities of interest. WEN service providers are required to determine the virtual interest group (as shown by the taxonomy in Section 5) for their application. This determination is based upon the types of information services and/or data that are common to the community’s processes or business operations and whether they would benefit from web-enabling as well as portal integration and dissemination. Combining services within virtual interest groups will illustrate size, priority, and complexity of data/information and application sharing and aid in determining cost-benefit and other intangible benefits (e.g., reduction in system operator/administrator task complexity). The managers of each community of interest (e.g., ASNRDA-CHENG/OPNAV for Battleforce information requirements) will provide the developer with the location of their authoritative data source(s) through the WEN IT Governance Board/TFWeb process. The goal is to provide an integrated data environment that will use smart data replication to allow enterprise access to authoritative data sources observing the demands of limited operational bandwidth and connectivity. This environment will promote application re-use/consolidation around the authoritative data sources.

11 Reviewing Existing Services

11 Market Review of Existing Services and Content

Program, application, service, or content managers should review existing applications (commercial or otherwise) for overlapping capabilities. Build/Buy/Re-engineering decisions should be predicated on examining the list of existing services and content and their respective descriptions to ascertain whether an existing service or content can be reutilized. In short, is there an approved DoN/DoD application or service already in existence that provides this service/content?

11 Registered Services and “Best of Breed” Determination

Information regarding current registered services and content is found at the site of the master registry or from AMCS. If a new service or content is being proposed for addition to the Enterprise Portal environment, an Intent to Migrate package (Section 8.2) must be submitted to the AMCS for review. AMCS verifies that there are no applications in the WEN environment that provide overlapping functionality or content, and that the implemented technologies, styling, and supportability requirements provide for TFWeb integration.

In the event that there is overlapping functionality, AMCS works with the application owners to understand and document the overlap and develop a migration plan. If a migration plan cannot be agreed upon by AMCS and the concerned application owners, the documentation is given with a recommendation to the TFWeb Executive Steering Group (ESG), which then determines which applications will be allowed to integrate with the portal. The ESG may also make recommendations to OPNAV and Echelon II commands to resolve application/data overlap. This decision is based upon the following criteria:

· Technical/Architectural analysis performed by an independent TFWeb engineering team. This analysis includes all relevant engineering requirements (e.g., security) as defined by this and other DoD/DoN/TFWeb guidance.

· Operational Advisory Group Analysis. An OAG comprised of members from the appropriate service elements evaluates the applications for use in their environments to meet their operational needs. Several functional groups already exist and these are utilized when possible.

· Business Case analysis. Each application provider is required to build a business case analysis for evaluation. This includes review of the funding requirements, ILS Plan, and other similar documentation.

11 Supportability and Maintainability

A product that is successfully integrated into the Enterprise Portal environment will be unsuccessful if it is not adequately supported. Each WEN service provider is required to show an ILS Plan that demonstrates maintainability and supportability of their application or service.

11 Web Enablement Determination

Being “web-enabled” does not mean, “TFWeb-ready”. “TFWeb-ready” connotes that the developer has followed the registration, development, integration/testing, and deployment processes laid forth in this document, and been approved by the WEN IT Governance board.

11 Existing Web-Enabled Applications

Even though web enabling is not equivalent to being TFWeb-ready, being web-enabled will help accelerate the process. The main issues that will impact the developer with regards to TFWeb integration will be:

· Implementation of web technologies (and appropriate versions) specified in the WEN Technology Baseline (e.g., Java/J2EE, Perl, CGI)

· Presentation styling. The developer’s web presence may be in conflict with TFWeb promulgated styling conventions or incompatible with the portal interface.

· Implementation of naming conventions and data interoperability standards (e.g., XML).

The ultimate decision to undertake realignment or retrofit of existing web-enabled applications into the Enterprise Portal environment is left to the program, application, or content manager. It is strongly recommended that the entire TFWeb registration process be reviewed prior to these undertakings.

11 Non-Web-Enabled Applications

Before launching into an intensive integration effort to “web-enable” an existing Navy service or application, it must first be determined whether there is value in doing so. It may not make sense to web enable every application or service. In many cases, the application may not be integrated into a web-based environment, but the data it provides may be hosted on the portal as relevant content. This section of the guidance document identifies a set of criteria that can be used to evaluate an application or service for “whole” or “partial” web enabling. The following should be used as general guidance for the program, application, or content manager to determine whether or not they should endeavor to web-enable their application, and then integrate it into the Enterprise Portal environment.

The criteria identified to date include the following:

· Information Services

· Real-Time Versus Non-Real-Time

· Service/Application User environment.

· User/Administrator

It is important to note that while all applications may not require web-enabling, and therefore, do not require integration into the Enterprise Portal environment, all applications will be subject to review by the appropriate program, application, or content manager.

11 Information Services

If your application provides some content that would be usable by other elements of the Enterprise Portal, then it is a candidate for some level of TFWeb integration. It is important to remind developers that TFWeb ‘web-enabling’ is not equivalent to simple “web enabling.” It does not necessarily mean that the application runs within the context of a browser. It may simply mean that the application offers up its data for browser-presentation rendering by the Enterprise Portal engine. It also means providing of content to a shared/common data environment.

Determination of content relevance across the enterprise is determined, in part, by identifying virtual interest group, and coordinating with the appropriate authoritative data source.

11 Real-Time Versus Non-Real-Time

The Web or Internet is not a real-time medium. There is no intention of firing a weapon from a web browser. Real-time, rapid response systems are not good candidates for web enabling. However, there may be status information from a real-time system that can and should be web enabled and made available.

11 Service/Application User Environment

Web applications are by definition multi-tiered network services that deliver content (e.g., application components or data) based on an established network, data persistence, and security model. There are application and service environments that are fundamental to operational requirements (e.g., small community of interest users that are distributed across large areas) regardless of user community size. For example, there’s a community of senior flag officers that are extremely essential to operational requirements as a community of interest. These users require specific applications/data, unique to their environment, with high levels of security that must operate in a distributed manner.

11 User/Administrator

Much of the development effort of any application goes into the management interface. While required, this interface may be used by a small fraction of the total number of users. It is recommended that application owners focus first on the end-user interface to deliver as much capability to the end user as resources and time permits. Rewriting existing management interfaces often has a cost higher than any benefit gained by the managers. New applications, however, should expect that all functionality is web-based when originally developed.

11 Intent to Migrate

Once the decision is made to migrate an application to the Navy Enterprise Portal, the developer must notify the TFWeb team of the intent to migrate an application or service. Completion of these steps (Section 8.3) is required for application-specific AMCS/AMTS support. This serves to notify all concerned of integrator or sponsor’s intent to provide a given service via the TFWeb portal and allows migration tracking and preparation for receipt of required information for migration. It also helps to prioritize and focus technical support assets based on the impact of the application, timeframe of migration, and difficulty of transition. The following actions are taken by the AMCS contact assigned based on the application owner submission.

11 Submission to the application information database.

This database is maintained by AMCS. AMCS will review the submission to determine if fields are complete and understandable. Descriptions should be useful and thorough. Yes/no answers may need further comment. Other information may be required to be tracked for the application. Implementation dates should be reasonably achievable. The AMCS contact for the application ensures the submission is properly reviewed and entered in the database and notifies the Echelon II contact of any changes made during the review process to their submission.

11 Integration Level Appropriateness

Level 1 applications require specific detailed explanations why they cannot be Category 2 and require AMCS OIC’s approval of a waiver for integration into the portal. Category 2 applications may be approved by the TFWeb Echelon II liaison for preexisting applications and for applications that require immediate rollout beyond the portal user base.

11 Identify if the program uses Java, JavaScript, ActiveX, or plugins

Additional review/analysis of these issues are coordinated through the TFWeb Echelon II liaison with the appropriate AMCS department head covering technical issues. In addition, non-mobile ActiveX or plug-ins must have a satisfactory distribution plan in compliance with applicable NMCI and IT-21 policies. Determine current status of application compliance with Navy Mobile Code Policy and document any waivers currently granted.

11 Examine the application database for similar programs that are currently under development

The AMCS contact reviews data sources for possible data overlap and examines overlapping applications reported by other application owners. If possible overlap exists, they interface with program managers of all concerned programs and data sources to determine exact functionality, user base, and IT requirements. If consolidation possibilities exist, they brief AMCS OIC on overlap and application/data owners’ intentions to determine any further action warranted.

11 Determine current security model and whether IATO/ATO exists, or is required

Determine what changes, if any, are required to the current application security model in order to integrate application. Is the current security model compatible with TFWeb security model (issues like SSN)? Data-only applications (using XML/XSL or HTML data pages) do not normally require an IATO/ATO. Applications utilizing mobile code always require an IATO/ATO unless that mobile code is covered by the IATO/ATO of an application previously integrated into the portal. If no changes are required, the AMCS contact ensures a copy of existing IATO/ATO cover sheet is sent to AMCS IA.

11 Determine XML integration requirements

Evaluate the plan for design and registration of the schema and other XML documentation. Does this need to be coordinated with other commands using similar data? Ensure that the application owner is familiar with the DoN XML instruction.

11 Service Registration

The Service Registration package (Section 8.3) is submitted to the AMCS contact after development has been completed. AMCS performs the following items as part of the package review. This section also applies to changes required as part of the beta testing procedures prior to restarting testing.

11 Verify completeness and accuracy of portal metadata

This should include the directory entry text, category, description, application owner, and application “customer service” contact. This is information available to any user of the portal. Is it sufficient to determine whether access to an application is required and how to obtain access? Does it address intended user base and purpose of the program? Similar programs directed at other user bases should be mentioned in the description.

11 Verify migration plan for level of integration is submitted

Migration plan is required for applications migrating at Level I or Level II. For the pilot program, the application may enter beta testing prior to submission of a migration plan. However, the TF Web Governance Board will not approve integration into the production portal without a migration plan. A migration may be as brief or as detailed as desired; however, timeframe, critical path, and issues to be resolved must be included. Retain copy of migration plan in AMCS Echelon II notes for future reference. Brief the migration plan to AMCS OIC for approval.

11 Ensure IATO/ATO has been updated if security model changed for TFWeb migration

Provide copy of IATO/ATO cover letter to AMCS IA for reference documentation. Submission of full accreditation paperwork is not required unless determined necessary by AMCS IA.

11 Verify initial access control list submitted along with information describing method of updating ACL

Verify method is compatible with current portal capabilities and user expectations. If access cannot be given in a timely manner, ensure it is indicated in the application description visible to the user. Review and approve appropriate roles for application visibility. For most applications that control security at the application level, the ACL should be “All Portal Users”.

11 Portal Compliance Testing

The AMCS liaison shall be provided a temporary login with access to key features of the application. In the event access to key areas cannot be provided due to security/access issues, alternate methods will be coordinated between AMCS and the application developer. Spot check to ensure claimed capabilities of user description are provided and significant limitations are documented. Spot-check HTML used is "portal compliant" (no frames). Record all concerns, discuss with developer or program manager. Submit any unresolved discrepancies to AMTS (for pre-beta review) or as part of the AMCS beta testing notes. This is not intended to be a thorough review of the program. Rather, it serves to ensure any obvious issues are recognized and documented prior to the beta testing process to help expedite testing

11 Review summary of testing accomplished

Summary should include duration, type of users, type of test scripts performed, type of data used, and environment in relation to the production platform. What is the risk that the program will fail beta testing? Has there been sufficient operator testing to ensure utility in the production environment?

11 Review portal integration information submitted

To ensure effective use of testing time and to allow maximum preparation time for testing, all required portal integration information should be submitted as part of the request. While further changes may be necessary or desirable, this allows for a package of all required information to be submitted from AMCS to the beta test site. Ensure integration module code has been provided.

Identify if substantive revisions have been made to sample code. Module code should be fully documented and readable. Evaluate code for posting to open source site (based on differences from baseline code). If review of code is required, submit request to AMTS. Are there any reusable components that should be separately maintained?

11 DoN XML guideline compliance

If the application does not meet DoN XML guidelines, ensure migration plan is submitted and approved by AMCS OIC.

11 Set next review date

General guideline is 1 year if all requirements met or halfway to next integration level (3 month minimum) if a migration plan has been submitted for non-Level 3 integration or noncompliant XML are used. If IATO has been submitted, review date should be prior to its expiration. By this review date, a member of AMCS will review documentation and implementation history, and determine if any additional information is required. Milestones in migration plans or further functionality development will be reviewed. Also, database information will be verified.

11 Verify database entry is complete and accurate in AMCS application database

AMCS database information is in section 11.2.1.

11 Technical Review

AMCS may request a technical review at any time from the AMTS or alternate source. This technical review may evaluate code base, technology, mobile code, or security among possible areas. In some cases this is used to evaluate leading-edge technology and possible unforeseen impacts on TFWeb environment. In other cases, it is used to check for compliance with TFWeb architecture in a more thorough fashion than is possible in the beta testing environment. If necessary to evaluate an application’s readiness for migration, this review is completed and any discrepancies resolved prior to permission for beta testing. The AMCS is the final arbiter of whom discrepancies are required to be resolved prior to beta testing, though review of an AMCS decision may be requested from the TFWeb Executive Steering Group.

11 Configuration Verification

Verify configuration of any local application servers or local remote module servers are documented. The ability of local infrastructure to support numbers of users intended should be documented as well as ability to scale to additional users. Any known scalability issues should be documented.

11 Ensure application is logged in the DON CIO Data Management and Interoperability Repository.

DMIR is currently in the beta testing stage. This is an optional requirement until full functionality in the second quarter of 2002.

11 Verify all application data structures and data interfaces are documented.

Databases should be accessible independently of application if underlying database engine and security supports. Data interfaces should also be accessible independently.

11 Verify AMCS OIC has approved migration plan for application/data overlap.

Migration plan should address duplicative applications and data sources and their planned resolution. Migration plan is not due until final review of application after beta testing.

11 Documentation of Developer Requirements.

Ensure developer requirements for future capability upgrades of the WEN architecture and implementation of the architecture are documented. This should consist solely of architecture or cross-application services, not those useful only to a single application. This helps prioritize additional requirements based on the ability of the developer community to capitalize upon the new features. This should only include functionality developers are currently able to utilize.

11 Application/Service Delivery Phase

11 Application Acceptance

Only applications that have completed the migration request process with TFWeb are submitted (e.g., application components, links/icons, datafill, DTDs/Schemas) for integration in Enterprise Portal. All applications need to ensure compliance with required DoN/DoD policies in addition to those required by TFWeb. The TFWeb process does not supercede individual program, application, or content manager processes. It is expected that the Enterprise Portal will receive applications that have gone through internal system engineering and logistics processes (e.g., CCB, internal testing, CM).

11 Application Delivery

Each application is expected to deliver system and administration documentation that conforms to Enterprise Portal documentation guidelines (e.g. XML or HTML). This includes software operation and concise loading instructions to enable users/administrators to load and administer the applications with minimum intervention. The instructions should also include load verification and load back-out procedures.

Once the application is successfully loaded into the TFWeb developmental portal environment, the developer will then continue with the remainder of the self-certification procedure, moving into the performance criteria.

11 Application Integration

The developer is encouraged to notify TFWeb of an impending application release no later than 30 days prior to portal integration. This gives the TFWeb team time to arbitrate schedule conflicts with other application developers.

The application integration process differs depending upon the type of application to be integrated, and the level of integration the application is achieving. In all cases the goal is to provide the developer a process and supporting infrastructure by which they can develop, test, and certify their application(s) for use in the Enterprise Portal environment with a minimum involvement by a core TFWeb team or other external agencies.

Appendix A: Department of Defense and Department of the Navy Authority References

There are many DoD and Navy policies and guidance that need to be followed to provide consistency across applications. Sometimes, the timing and overlap between these policies and guidance can cause the local commands confusion over which apply. The following list includes some of the more relevant policies and offices for use as references in preparing for Enterprise Portal integration. Many of the DoD Webmasters Policies And Guidelines can be found at http://www.defenselink.mil/webmasters/
· ASD(C3I) Memorandum "Policy Guidance for Mobile Code Technologies in Department of Defense (DoD) Information Systems," dated 7 November 2000

· ASD(C3I) Memorandum “Accessibility of DoD Web Site to People with Disabilities” dated 21 Jul 2000

· ASD(C3I) Memorandum “Increasing The Security Posture Of The NIPRNet” dated August 22, 1999

· CJCS Memo CM-510-99 Information Operations Condition dated 10 Mar 1999

· CNO Washington DC 091934Z JUN 00 Navy Certification & Accreditation Of Systems And Networks

· CNO Washington DC 181840Z MAY 99 Navy Information Operations Condition (Infocon) Implementation

· CNO Washington DC 211137Z AUG 00 Navy-Marine Corps Firewall Policy Navy-Marine Corps Niprnet Firewall Configuration Baseline Dated: 01 FEB 01 Available At SIPRNET URL - http://infosec.navy.smil.mil/Fleet/
· CNO Washington DC/N6// Policy Update: Use Of Portable Electronic Devices In The Navy

· DIRNSA FT George G Meade MD 171857Z JAN 01

· DIRNSA Information Assurance Advisory No. IAA-001-01 "Personal Electronic Device Security Guidance"

· DoD Directive 5040.5 “Alteration of Official DoD Imagery”

· DoD Directive 5200.28 “Security Requirements for Automated Information Systems”

· DoD Instruction 5200.40 “DoD Information Technology (IT) Security Certification And Accreditation Process (DITSCAP)”

· DoD Instruction 5230.29 “Security & Policy Review of DOD Information for Public Release”

· DoD Joint Technical Architecture (JTA) Version 4.0 dated 2 April 2001 located @ http://www-jta.itsi.disa.mil/
· DoD PKI Policy “Public Key Enabling (PKE) of Applications, Web Servers, and Networks for the Department of Defense (DoD)” dated 17 May 2001
http://www.c3i.osd.mil/org/cio/doc/may172001.pdf
· DoD Policy Guidance for use of Mobile Code Technologies in the Department of Defense Information Systems, dated November 7, 2000

· DoD Policy Memorandum "Privacy Polices and Data Collection on DOD Public Web Sites" dated 13 July 2000 http://www.c3i.osd.mil/org/cio/doc/cookies.html

· DoD Policy Memorandum “Web Site Administration” dated Dec 7 1998

· DON Interim XML Policy. “Interim Policy On The Use Of Extensible Markup Language (XML) For Data Exchange of 6 Sept 2001”
Document filed under the following link: http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf
· DON Policy For Content Of Publicly Accessible World Wide Web Sites

· DONXML Developer's Guide - 29 October 2001 - Department of the Navy, Office of the Chief Information Officer, XML Work Group
Document filed under the following link, http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf
· Fleet Internet Security Handbook (FISH) Advisories & Bulletins: at http://infosec.navy.mil

· FLTINFOWARCEN NORFOLK VA 131301Z JUL 00

· NAVCIRT Advisory 00-28 "Personal Digital Assistants Security Considerations”

· NAWCADINST 5728.1 Policy for Release of Information on WWW servers

· OPNAVINST 2201.2 “CNO-CMC Navy and Marine Corps Computer Network Incident Reporting Policy“

· OPNAVINST 5239.1 Navy Information Assurance Program

· SECNAVINST 5211 .5D, “Department of the Navy Privacy Act (PA) Program”

· SECNAVINST 5239.3 “Department of the Navy Information Security (INFOSEC) Program”

· SECNAVINST 5430.97, “Assignment of Public Affairs Responsibilities in the Department of the Navy”

· SECNAVINST 5510.36 DON Information Security Program Regulation.

· SECNAVINST 5720.42F, “Department of the Navy Freedom of Information Act (FOIA) Program”

· SECNAVINST 5720.44A, “Department of the Navy Public Affairs Policy and Regulations”

· SECNAVINST 5720.47 Department of the Navy Policy for Content of Publicly Assessable World Wide Web Sites

· Section 508 Of The Rehabilitation Act As Amended, 29 U.S.C. Section 794d, Requires That When Federal Agencies Develop, Procure, Maintain Or Use Electronic And Information Technology (IT).

· SPAWAR PMW-161 Naval VPN Product Requirements

Appendix B: Service Code Samples/Templates

Sample Service Module source code for each of the three levels of integration is available at the TFWeb Open Source Site:

https://tfw-opensource.spawar.navy.mil/servlet/portal/
Once logged into the Open Source Site, select “Developers Resources” from the portal menu (upper left), and then select “Registry/Module Server Team Developer’s Network” to access the sample code.

The XML schema definition for the PRIDataRequest and PRIDataResponse HTTP header variables is provided in the following sections.

PRI Request XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

<xsd:element name="PRI_Request">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ChannelContext" type="ChannelContextType"/>

<xsd:element name="SessionContext" type="SessionContextType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="ChannelContextType">

<xsd:sequence>

<xsd:element name="PortalLocation" type="PortalLocationType"/>

<xsd:element name="Client" type="ClientType"/>

<xsd:element name="CheckBandwidth" type="boolean" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SessionContextType">

<xsd:sequence>

<xsd:element name="SessionID" type="GuidType"/>

<xsd:element name="UserID" type="UserIDType"/>

<xsd:element name="Roles" type="RolesType"/>

<xsd:element name="ClientStyle" type="ClientStyleType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RolesType">

<xsd:sequence>

<xsd:element name="Role" type="RoleType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="RoleType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="200"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ClientType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="80"/>

<xsd:enumeration value="browser"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="PortalLocationType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="80"/>

<xsd:enumeration value="ashore"/>

<xsd:enumeration value="afloat"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="boolean">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="true"/>

<xsd:enumeration value="True"/>

<xsd:enumeration value="TRUE"/>

<xsd:enumeration value="false"/>

<xsd:enumeration value="False"/>

<xsd:enumeration value="FALSE"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="UserIDType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="200"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ClientStyleType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="500"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="GuidType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="([0-9]|[A-F]){8}\-([0-9]|[A-F]){4}\-([0-9]|[A-F]){4}\-([0-9]|[A-F]){4}\-([0-9]|[A-F]){12}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

PRI Response Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

<xsd:element name="PRI_Response">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Timeout" type="TimeoutType" minOccurs="0"/>

<xsd:element name="ReturnCode" type="ReturnCodeType" minOccurs="0"/>

<xsd:element name="ReturnMessage" type="ReturnMessageType" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="TimeoutType">

<xsd:restriction base="xsd:int">

<xsd:minInclusive value="0"/>

<xsd:maxInclusive value="10000"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ReturnCodeType">

<xsd:restriction base="xsd:int">

<xsd:minInclusive value="0"/>

<xsd:maxInclusive value="32000"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ReturnMessageType">

<xsd:restriction base="xsd:string">

<xsd:minLength value="0"/>

<xsd:maxLength value="2048"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Appendix C: Standards

Technology

	Technology
	Version

	J2EE
	1.2

	JSP
	1.1

	BEA WebLogic
	6.1

	Microsoft IIS
	5.0

	EJB
	1.1

	Servlet
	2.2

	HTML
	4.0

	XML
	1.0

	SOAP
	1.1

	Perl
	5.6.1

Appendix D: Terminology Glossary

	Term
	Definition

	3DES
	Triple Data Encryption Standard

	ACID
	Atomicity, Consistency, Isolation, and Durability

	ACL
	Access Control Lists

	ACO
	Administrative Contracting Officer

	ACS
	Assistant Chief of Staff

	ACT
	Action Collaboration Team

	AD
	Active Directory

	ADPM
	Architecture Development Process Model

	AFB
	Air Force Base

	AMCS
	Application Migration Customer Support

	AMTS
	Application Migration Technical Support

	AoA
	Analysis of Alternatives

	AOR
	Assumption of Responsibility

	API
	Application Program Interface

	Application/Data Integration
	Involves a more closely coupled integration of an application with the Enterprise Portal System.

	ASD
	Assistant Secretary of Defense

	ASN
	Assistant Secretary of the Navy

	ASP
	Active Server Pages

	ATM
	Asynchronous Transfer Mode

	ATO
	Authority to Operate

	BAN
	Base Area Network

	BFM
	Business Financial Manager

	BLII
	Base Level Information Infrastructure

	BPR
	Business Process Reengineering

	BUMED
	Bureau of Medicine and Surgery

	BUPERS
	Bureau of Naval Personnel

	BWM
	Bandwidth Manager

	C&A
	Certification and Accreditation

	C2
	Command and Control

	C3I
	Command, Control, Communications, and Intelligence

	C4I
	Command, Control, Communications, Computers, and Intelligence

	CA
	Customer Advocate

	CA
	Certificate Authority

	CAC
	Common Access Card

	CAN
	Campus Area Network

	CAPI
	Cryptographic Application Program Interface

	CBT
	Computer Based Training

	CCA
	Claimant/Command Agreement

	CCA
	Clinger-Cohen Act

	CCSD
	Command Communications Service Designator (DISA)

	CDR
	Critical Design Review

	CEP
	Command Execution Plan

	CFE
	Contractor Furnished Equipment

	CFO
	Chief Financial Officer

	CGI
	Common Gateway Interface

	CINCLANT
	Commander in Chief Atlantic

	CINCLANTFLT
	Commander in Chief, U.S. Atlantic Fleet

	CINCPAC
	Command in Chief Pacific

	CIO
	Chief Information Officer

	CLIN
	Contract Line Item Number

	CM
	Configuration Management

	CMC
	Commander of the Marine Corps

	CME
	Command Mission Equipment

	CMS
	Cryptologic Material Security

	CMS
	COMSEC Material System

	CMS
	Conference Management Services

	CN
	Common Name

	COE
	Common Operating Environment

	COM+
	Common Object Model Plus

	COMPUTSEC
	Computer Security

	COMSEC
	Communications Security

	CONOPS
	Concept of Operations

	CONUS
	Continental United States

	COO
	Chief Operating Officer

	COR
	Contract Officer Representative

	CORBA
	Common Object Request Broker Architecture

	COTR
	Contracting Officer’s Technical Representative

	COTS
	Commercial Off the Shelf

	CPARS
	Contract Performance Assessment Reports

	CPU
	Central Processing Unit

	CR
	Completion Report (DISA)

	CRA
	Continuing Resolution Authority

	CRL
	Certificate Revocation List

	CS
	Customer Satisfaction

	CSS
	Cascading Style Sheets

	CT&E
	Contractor Test & Evaluation

	CTF
	Commander Task Force

	CTO
	Chief Technology Officer

	CTR
	Contract Technical Representative

	Customization
	Allows the portal administrator to filter the content based on user roles and to push content to the users.

	DAA
	Designated Approval Authority

	DASN
	Deputy Assistant Secretary of the Navy

	DATMS-C
	Data ATM Services-Classified

	DATMS-U
	Data ATM Services-Unclassified

	DBMS
	Database Management System

	DCMS
	Director, COMSEC Material System

	DCOM
	Distributed Component Object Model

	DCS
	Data Conference Services

	DDN
	Defense Data Network

	DFAS
	Defense Financial Accounting Service

	DFS
	Distributive File System

	DHTML
	Dynamic Hyper Text Markup Language

	DII
	Defense Information Infrastructure

	DIMHRS
	Defense Integrated Military Human Resource System

	DISA
	Defense Information Systems Agency

	DISN
	Defense Information Systems Network

	DITCO
	Defense Information Technology Contracting Office (DISA)

	DITSCAP
	Defense Information Technology Security Certification and Accreditation Process

	DL
	Distribution Lists

	DMS
	Defense Messaging Service

	DMZ
	De-Militarized Zone

	DN
	Distinguished Name

	DNA
	Distributed Internet Architecture

	DoD
	Department of Defense

	DOM
	Department of Marines

	DOM
	Document Object Model

	DON
	Department of the Navy

	DPM
	Deputy Program Manager

	DRM
	Design Reference Manual

	DSC
	DISN Service Center (DISA)

	DSL
	Digital Subscriber Line

	DSN
	Defense Switched Network

	DTC
	DISN Transition Contract

	DTD
	Document Type Definition

	DVS
	DISN Video Systems

	EAF
	Enterprise Architecture Framework

	EDS
	Electronic Data Systems

	EFS
	Encrypted File System

	EIWG
	Enterprise IT Strategy and Coordination Working Group

	EJB
	Enterprise Java Beans - A Java API developed by Sun that defines the component architecture for multi-tiered systems. EJBs are the objects in a multi-tiered object-oriented J2EE environment, and enable the developers to focus on actual business architecture as opposed to developing the interfaces between the different components themselves

	Enterprise Portals
	Enable an enterprise to share information and provide web-based access to applications/services to its employees, customers, and partners.

	EO
	Enterprise Operations

	EPOC
	Electronic Piece of Cheese (Psion EPOC-16 operating System)

	ESR
	Enterprise Service Repository

	FAD
	Financial Accounting Data

	FFP
	Firm-Fixed-Price

	FIMS
	Financial Information Management System

	FISC
	Fleet Industrial Supply Center

	FIWC
	Fleet Information Warfare Center

	FMB
	Financial Management Board

	FMOS
	Flexible Master Operational Servers

	FOC
	Full Operational Capability

	FSO
	Facility Security Officer

	FTE
	Full Time Equivalent

	FTS
	Federal Telecommunications Service

	FY
	Fiscal Year

	FYDP
	Five-Year Defense Plan

	GETS
	Government Emergency Telecommunications Service

	GFE
	Government Furnished Equipment

	GFI
	Government Furnished Information

	GFI
	Government Furnished Inventory

	GIG
	Global Information Grid

	GMO
	Government Management Office

	GPO
	Group Policy Objects

	GUI
	Graphical User Interface

	HAC S&I
	House Appropriations Committee Survey and Inspection Team

	HASC
	House Armed Services Committee

	HCI
	Human Computer Interface

	HD
	Help Desk

	HDML
	Hand-Held Device Markup Language

	HI
	Horizontal Integration

	Horizontal Portal
	Provides general information, no particular focus, variety of subjects, variety of users , and cuts across business functions and applications. Example: Yahoo.

	Hotlink Integration
	Provides as is access to an existing web-based application through a hyperlink or a list of hyperlinks.

	HQMC
	Headquarters, Marine Corp

	HTML
	HyperText Markup Language

	HTTP
	HyperText Transfer Protocol

	HTTPS
	HyperText Transfer Protocol Secure

	I&A
	Information and Authentication

	I/Q/O
	Inquire/Quote/Order (DISA)

	IA
	Information Assurance (Security)

	IATF
	Information Assurance Technical Framework

	IATO
	Interim Authority to Operate

	IAVA
	Information Assurance Vulnerability Alert

	ICD
	Interface Control Document

	ID
	Identification

	ID/IQ
	Indefinite Delivery/Indefinite Quantity

	IDO
	Incentive Determining Official

	IDS
	Intrusion Detection Services

	IE
	Internet Explorer

	IEEE
	Institute of Electrical and Electronics Engineers

	IETF
	Internet Engineering Task Force

	IIOP
	Internet Inter ORB Protocol

	ILS
	Integrated Logistic Support

	IM
	Information Management

	IM/IT
	Information Management/Information Technology

	INFOCON
	Information Operations Condition

	INFOSEC
	Information Security

	IOC
	Initial Operational Capability

	IOT&E
	Interoperability Test and Evaluation

	IP
	Internet Protocol

	IPG
	Integrative Policy Group

	IPR
	In-Progress Review

	IPT
	Integrated Process Team

	IPT
	Integrated Product Team

	IR
	Information Request

	IRB
	Incentive Review Board

	IRC
	Internet Relay Chart

	ISDN
	Integrated Switched Digital Network

	ISEA
	In Service Engineering Agent

	ISF
	Information Strike Force

	ISMO
	Information Systems Management Office

	ISO
	International Standards Office

	ISSO
	Information Systems Security Officer

	IT
	Information Technology

	IT-21
	Information Technology for the 21st Century

	ITI
	Information Technology Infrastructure

	ITIA
	Information Technology Infrastructure Architecture

	ITSC
	Information Technology Services Center

	ITSG
	Information Technology Standards Guidance

	J2EE
	Java 2 Enterprise Edition - Introduced in 1995 by sun microsystems. It is an object-oriented language designed for the world wide web, similar to c/c++, in which the source is compiled into ‘bytecode’, which is then interpreted by run-time environment (known as a java virtual machine) on the host machine.

	J2ME
	JAVA 2 Micro Edition

	Java
	A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems [not an acronym]

	Java Database Connectivity (JDBC)
	The Java equivalent to ODBC, which acts as the standard database connection language/method for Java applications.

	Java Servlet Pages (JSP)
	Java applets that run on the server side as an alternative to Common Gateway Interface (CGI) applications. JSPs are an extension of servlets that allow web developers to dynamically build web pages.

	JDBC
	Java Database Connectivity

	JMS
	Java Messaging Service

	JNDI
	Java Naming and Directory Interface

	JPEG
	Joint Photographic Expert Group

	JRE
	Java Runtime Environment

	JSP
	Java Server Pages

	JTA
	Joint Technical Architecture

	JTS
	Java Transaction Services

	JV 2010
	Joint Vision 2010

	KM
	Knowledge Management

	LAN
	Local Area Network

	LANTFLT
	Atlantic Fleet

	LDAP
	Lightweight Directory Access Protocol

	LDAPS
	Lightweight Directory Access Protocol Secure

	LE
	Lead Engineer

	LOA
	Line of Accounting

	LOE
	Level of Effort

	LSA
	Logistics Support Analysis

	MAC
	Moves, Adds, and Changes

	MAN
	Municipal Area Network

	MAN
	Metropolitan Area Network

	MARCORSYSCOM
	Marine Corps System Command

	MARFORLANT
	Marine Forces Atlantic

	MARFORPAC
	Marine Forces Pacific

	MATCOM
	Material Command

	MAW
	Marine Aircraft Wing

	MCAGCC
	Marine Corps Air Ground Combat Center

	MCCDC
	Marine Corps Combat Development Center

	MCEN
	Marine Corps Enterprise Network

	MCLB
	Marine Corps Logistics Base

	MCRC
	Marine Corps Research Center

	MCSC
	Marine Corps Supply Command

	MCTN
	Marine Corps Tactical Network

	Metadata
	Metadata describes how and when and by whom a particular set of data was collected, and how the data is formatted. Metadata is essential for understanding information stored in data warehouses.

	MFS
	Multifunction Switches

	MILCOM
	Military Communications

	MILDEP
	Military Department

	MILSATCOMM
	Military Satellite Communications

	MIME
	Multipurpose Internet Mail Extensions

	MLS
	Multi Level Security

	MMS
	Microsoft Metadirection Server

	MOA
	Memorandum of Agreement

	MS
	Microsoft

	MSL
	Multi Security Level

	MTS
	Microsoft Transaction Server

	MWR
	Morale, Warfare and Recreation

	NASCAMP
	Navy Switch and Cable Modernization Program

	NAVAIR
	Naval Air Systems Command

	NAVICP
	Navy Inventory Control Point

	NAVRESFOR
	Commander, Navy Reserve Force

	NAVSEA
	Naval Sea Systems Command

	NAVSUP
	Naval Supply Systems Command

	NCR
	National Capital Region

	NCW
	Network Centric Warfare

	NIPRNET
	Non-Secure Internet Protocol Router Network

	NITF
	National Imagery Transmission Format

	NMC
	Network Management Center

	NMCI
	Navy Marine Corps Intranet

	NMS
	Network Management System

	NNIOC
	Naval Network and Information Operations Command

	NOC
	Network Operating Center

	NSA
	National Security Agency

	NSIPS
	Naval Standard Integrated Personnel System

	NTCSS
	Navy Tactical Combat Support System

	NTLC
	Network Transport Logistics Center

	NTPG
	NMCI Transition Planning Guide

	NVI
	Naval Virtual Internet

	OACT
	Overarching Action Collaboration Team

	OCONUS
	Outside – Continental United States

	ODBC
	Open Database Connectivity

	OLA
	Office of Legislative Affairs

	OMG
	Open Management Group

	OPCON
	Operational Control

	OPM
	Office of Personnel Management

	OPNAV N6
	Chief of Naval Operations

	OPSEC
	Operations Security

	OpSS
	Open Source Site

	ORB
	Object Request Broker

	ORN
	Order Request Number

	OS
	Operating System

	OSD
	President’s, Office of the Secretary of Defense

	OT&E
	Operational Test & Evaluation

	OU
	Operational Unit

	OWAN
	Okinawa Wide Area Network

	P2P
	Point-to-Point

	PACOM
	Pacific Command

	PCL
	Proving Center Laboratory. Team that provides the environment for development and testing within the NMCI structure.

	PCO
	Program Contracting Officer

	PD
	Program Directorate

	PDA
	Personal Digital Assistant

	PDC
	Program Designator Code

	PDF
	Portable Document Format

	PDR
	Preliminary Design Review

	PEO-IT
	Program Executive Office for Information Technology

	Personalization
	Allows user to change the look of their portal at multiple levels to suit their preferences.

	PF
	Public Folders

	PIT
	Product Integration and Testing. Team that actually tests new NMCI infrastructure components. This testing is done within the PCL

	PITN
	Primary Information Transfer Node

	PKI
	Public Key Infrastructure

	PMO
	Program Management Office

	PMW
	Program Management Warfare

	PO
	Purchase Order

	POAM
	Plan of Action and Milestones

	POC
	Point of Contact

	POM
	Program Objective Memorandum

	POP
	Point of Presence

	PPI
	Past Performance Information

	PPP
	Priority Placement Program

	PR
	Purchase Request

	Presentation Integration
	Provides “as-is” access to an already web-enabled application. Requires that the application content be rendered within a panel.

	PRI
	Portal Repository Interface

	PSTN
	Public Switched Telephone Network

	PVP
	Permanent Virtual Path

	RA
	Recovery Agent

	RBA
	Revolution in Business Affairs

	RCP
	Request for Contractual Procurement

	RD&A
	Research Development and Acquisition

	RDBMS
	Relational Database Management System

	RDF
	Resource Description Framework

	REA
	Request for Equitable Adjustment

	RFP
	Request For Proposal

	RFS
	Request for Service (DITCO)

	RGC
	Routing Group Connector

	RGCS
	Routing Group Connector Services

	RII
	Reinvestment In Infrastructure

	RMA
	Revolution in Military Affairs

	RMI
	Remote Method Invocation

	RMS
	Remote Module Server

	RPC
	Remote Procedure Calls

	RSA
	Rivest, Shamir, & Adleman (public key encryption technology)

	RSS
	(RDF|Rich) Site Summary

	S
	Secret

	S/MIME
	Secure/Multipurpose Internet Mail Extensions

	SABI
	Secret and Below Interoperability

	SAM
	Status of Acquisition Message (DISA)

	SAN
	Storage Area Network

	SAR
	Status of Acquisition Report

	SAT
	Special Action Team

	SBU
	Sensitive But Unclassified

	SCI
	Sensitive Compartmental Information

	SDP
	Service Delivery Point (DISA)

	SDU
	Secure Domain Unit (DISA)

	SF
	Server Farm

	SGML
	Standard Graphical Markup Language

	SGML
	Standard Generalized Markup Language

	SIMAN
	Station Iwakuni Metropolitan Area Network

	SIPRNET
	Secure Internet Protocol Router Network

	SLA
	Service Level Agreement

	SME
	Subject Matter Expert

	SMTP
	Simple Message Transfer Protocol

	SOAP
	Simple Object Access Protocol

	SOC
	Security Operations Center

	SONET
	Synchronous Optical Network

	SOO
	Statement of Objectives

	SOW
	Statement of Work

	SP
	Service Pack

	SPAWAR
	Space and Naval Warfare Systems Command

	SPAWARSYSCEN
	Space and Naval Warfare Systems Center

	Specialized Portals
	Portals specific to a type of business.

	SQL
	Structured Query Language

	SSA
	Software Support Activity

	SSAA
	System Security Authorization Agreement

	SSC
	SPAWAR Systems Center

	SSC-SD
	SPAWAR Systems Center – San Diego

	SSL
	Secure Sockets Layer

	ST&E
	Security Test & Evaluation

	STAT
	Systems Transition Analysis Team

	T&E
	Test and Evaluation

	TCP
	Transmission Control Protocol

	TELCO
	Telephone Company

	TFW
	TFWeb, Task Force Web

	TO
	Task Order

	TOD
	Technical Objective Document

	TR
	Telecommunications Request (DISA)

	TS
	Top Secret

	TSO
	Telecommunications Service Order

	TSR
	Telecommunications Service Request

	UC
	Unclassified

	UIC
	Unit Identification Code

	URI
	Universal Resource Identifier

	URL
	Universal Record Locator

	USMC
	United States Marine Corps

	USN
	United States Navy

	VBA
	Visual Basic for Applications

	VBNS
	Very high Bandwidth Network Servers

	VCNO
	Vice Chief of Naval Operations

	VERA
	Voluntary Early Retirement Authority

	Vertical Portal
	Service centric portal built around a single service offering or application or business function like ERP, SCM, CRM applications.

	VIG
	Virtual Interest Group

	VPN
	Virtual Private Network

	VTC
	Video Teleconference

	W3C
	World Wide Web Consortium

	WAN
	Wide Area Network

	WAP
	Wireless Application Protocol

	WEN
	Web Enabled Navy

	WIPT
	Working Integrated Product Team

	WML
	Wireless Markup Language

	WR
	Working Request

	XML
	Extensible Markup Language. An extension/subset of Standard Graphical Markup Language (SGML) specifically designed for WWW dissemination and display of data. It is an open framework in which developers can develop (and, more importantly, standardize and validate against) a tagged data format.

	XSL
	Extensible Stylesheet Language

TF

class=file

class=wptoolbar

class=wpadvice

Class=wpoptions

class=folder

class=librarypath

Class=mout

class=contentheader

<table class=explorerbg>

<tr class=menuitem>

<td class=menuitem>

class=folderselected

<table class=explorerbg>

<tr class=menuitem>

<td class=selected>

� The Enterprise Module Server v1.1 supports only stateless EJB components.

PAGE
DEV400-U-A57006-APPL-TFWdeveloperguidance-v1.1
ii

_1069648510.vsd

_1070360521.doc

Appl.

Browser

SSO

Server

Enterprise Service

Registry

White

Pages

Green

Pages

Portal

Portal

Connector

SSO

Enterprise Module

Server

Service

Modules

SSO

1

5

7

10

2,3,4

8,9

Each of the numbers in the

diagram are assoicated with

section 7.1.3.x

6

SOAP

Server

_1070371658.vsd

_1070373112.vsd

_1070373269.vsd

_1070371782.vsd

_1070371403.vsd

_1070119035.vsd

_1070177515.vsd

_1069762709.vsd

_1070095270.vsd

_1069762366.vsd

_1063650029.vsd

_1066756308.vsd

_1069073020.vsd

_1062254748.ppt

Application

Presentation

Navy Portal

Data/Content

Navy XML Infrastructure

Web

Clients

Interoperability

Information Assurance

(SSL, PKI, CAC)

Enterprise

(E-1)

Enterprise

(E-1)

Enterprise

(E-1)

UNKNOWN-0

UNKNOWN-1

